

M.A. & M.Sc. in Digital Media or Informatik, Diplom Informatik

Monday 16 to 18 in OAS 3000 (Linzer Str. 9a) | VAK 03-05-H-708.53

2 SWS | 6 CP ECTS | Modul M-110

Frieder Nake: OAS building Linzer Str. 9a room 3015 | (0421) 218-3525 | nake@informatik.uni-bremen.de

Office hours: Wednesday 12-14 | www.agis.informatik.uni-bremen.de

Topics in Theory & Programming of
DIGITAL IMAGES

Summer 2010

Frieder Nake

Note 07 | 15 June 2010

Talking raytracing to dad …

So you really want me to explain “raytracing” to you? No kidding? Well then, be prepared for
a bit of mathematics, even though I will try to keep this down to a minimum. Programming,
you must know, is algorithmics. And algorithmics is maths. And maths is easy once you start
thinking very precisely about your subject matter. However, since they prevent us from rigo-
rous and critical thinking, we are not accustomed to this sort of thinking. Therefore, we
prefer being vague and wave our hands instead of think hard. But you blame that deplorable
state of affairs on mathematics instead of the school system, the church, and the political
system …
Anyways. You have asked what raytracing is. So, what is it? Well, it’s tracing rays. You trace
rays in order to force the computer – or, better, your program – to calculate an image and
display it.
For sure, you know what you do with your camera when you take a picture of your family.
You hold up the camera, point it in direction where we stand, and when you think to have
arranged everything beautifully, you press a button. That’s all.
Whatever pressing that button is doing, raytracing is the same but with the computer instead
of a camera. The only difference is, it is done the other way around, and not in physical life
(your body) but in metaphorical life. What that is, you should look up in the dictionary.
You know what the camera is doing? Right, it’s collecting light, and the light does something
inside the box of the camera. In the old days, there was something like a strip of paper, only it
was not paper, but a material you had to keep in total darkness, and you had to take it to the
store for some chemical treatment. You know. And in the end, you got your pictures.
With digital cameras, this has become simplified, I believe. But I don’t really know. Because
mysterious it still seems to be. Raytracing is definitely different because of the metaphor. So
try to think, just think.

First thing to think: what is a ray? Well, isn’t it something that starts at some point in space,
wherever you want it to start, and from there runs right into infinity, always straight, as
straight as it could be. A sunray, for instance. Or radiation. Nuclear fallout. But that’s way too
real. A ray is just a straight line, but one that has a start and a direction and no end.
Now, raytracing is photocamera shooting the other way around. In the case of the camera,
rays of light are collected as they are bouncing around at the speed of light wherever you have
light, and that’s almost everywhere. (With the exception only of James Turrell’s works. But
even there is light. If you don’t know his installations, make an effort.) The rays in raytracing
are different: they come from the camera and leave it into the scene you want to take a
picture of. I told you, it is the opposite of what you expect. It’s not physics, it’s algorithmics.

| 2

When you want to raytrace a scene into an image, first thing is you don’t start from a real
scene, one that you could walk through. Instead, you need to have a virtual scene, one that
could exist but does not other than inside the computer. It is a model. It is data. Structures of
data. Mathematics. It is in your head. But it’s inside the computer also. It’s unreal, but unreal
in a real sense. It is, if you see what I mean, in a state of “as-if”. Great, right? Everything on a
computer is an as-if.
What is a family scene in real life is a description of a family scene in the world of as-if. Even
more: it is an algorithmic description of a family scene. A description is algorithmic if the
computer can read it and operate on it.
The scene in our case consists of objects that have shape and color and location and, perhaps,
a few more features. The scene also contains one or more light-sources. Descriptions of light-
sources, to be correct. Plus it has a description of a camera situation. That is the location of
the camera (called the center of projection), and the size of the image plane, its distance from
the center of projection, and its orientation in space. You will understand, I am sure, that all
this is needed before raytracing can do anything. All these descriptions (models) are necessary
in the world of as-if, before anthing can happen there.
What will happen needs one last step in preparation. Have you heard of the pixel? No? Well
then, we need a bit of education in postmodern times. A pixel is a picture element. Since
computers can only deal with finite amounts of things, the image plane must be divided up
into so many picture elements. You know that because the monitor of your laptop has, per-
haps, 1024 by 768 pixels. That’s called the resolution. But what is important is the following
statement that should appeal to you: The image of the scene will be completely determined. when
each picture element has been given a color.
So the task of calculating an image from a scene is equivalent to determining, for each and
every pixel, its color value – according to the description of the scene. Raytracing then is one
method of doing just this. But how?
Your program takes three steps to do just that:
(1) it defines one ray from the center of projection through a pixel of the image plane and
into the scene;
(2) it uses this ray to calculate the visible spot of the scene;
(3) it uses even more rays to collect from the scene the color of the visible spot.

Is this easy to understand? Clearly, you only see that that is visible. Therefore task no. 2. If a
spot of the scene is visible, it must be of a certain color, otherwise it cannot be visible. Well,
every spot of the scene is of some color. The visible spots are no difference. But their color
must be determined. Because, if they are visible, we see them. So they appear in the image.
Therefore task no. 3.
The first ray, from the center of projection through the pixel and into the scene, is called the
primary ray. That’s not important but I tell you anyhow, because we can then talk more
intelligently about the situation. Primary rays solve the visibility problem. The other problem
is the coloring problem. It is solved by using secondary rays. Great surprise.
I don’t want to bother you with undue detail, but you will agree with me that secondary rays
will be used, starting from a visible spot, to probe the scene as much as ever possible. Each of
those probes should deliver a contribution from the rest of the scene to the final color value
at the visible spot. In principle, you may admit, light may get to a visible spot from every-
where in the scene. The effect that all rays of light generate at a visible spot, is called its color.
The secondary rays are used to approximate the set of all rays arriving at the visible spot.
So the last indication I want to make is on how these probes of secondary rays in raytracing
are the complete reversal of the light rays in the case of photography. When, in the photo-
graphy situation, the camera collects light rays, in the case of the computer image the com-
puter is shooting sight rays (pun intended). From light rays collected to sight rays shot. That’s

| 3

the difference. It is the essence. Once you accept it, everything else follows suit. Rays are
bouncing off objects they hit in the scene. They also infiltrate objects when they hit them. A
visible spot may also receive light from a light source. Metaphorically, we may say that spots
may be seen from the location of the light. This then is the third case of secondary ray.
We call the cases of secondary rays, dear and poor dad: reflected ray, refracted ray, and sha-
dow ray. Each one is dealt with in the same way as the original primary ray. A whole cascade
of secondary rays is shot into the scene. We call this tremendous algorithmic effort recursive
raytracing. If you program this, you will discover the beauty of programming, and the power
of recursive thinking. But that’s another story. And you have listened to me long enough.

Let me only add to this how you elegantly determine the visible spot. Remember: it needs the
primary ray. So if you embark on the gedanken-experiment of following a primary ray, what
happens? You follow your ray. Only two events are possible as you do this: either the ray
disappears into the background, or it hits an object and, perhaps, even more. So the primary
ray hits 0 or 1 ore more objects. Zero objects is clear: background color. Otherwise, one of
the objects must be the first to be hit. That’s where you have the visible spot.
Enough of this. I had warned you. There is a lot more of technical detail. I will not bother
you with it. Do you see how simple and how great computer science and computer graphics
is? I guess you deserve an example of a ray-traced image. And tell mom. She will love you.

A raytraced image. Found on the internet. So it’s free.

