
This equation is sometimes written in arrow notation, in which ca~e it is known
as the three-point jorm of the light transport equation and is given as

But since we are dealing with a perfectly diffu e surface, the outgoing radiance
L o (Xl) is the same in all directions and can be moved outside the integral. Thus.

391

(10.191)

(10.190)

(10.187)

(10.189)

(10.188)

B (x') = Lo(x') ·n

(
') _ B (Xl)

L o X ---
n

1= l b

j (x) ·ax

Physically Based Lighting and Shading Models and Rendering Algorithms

B (x') = Be (Xl) + 1M jr,d (Xl) ·B(x)· V (X, x') ·G (x, Xl) ·aAx'

B (x') = Be (Xl) + jr,d (Xl) .1M B(x)· V (x. Xl) ·G (X, Xl) ·aAx'

Using Eq. (10.95) we can rewrite the above equation as

Using Equ. 00.64). this reduces to

B (Xl) = Be (x') + Pd (Xl). r B(x). V (x, Xl) ·G (x, Xl) .aAx'
n 1M

This equation is known as the radiosity equation.

It should now be apparent that Eq. (10.181) can be simplified to

The value of the integral, representing the area under the graph of the func­
tion (see Fig. 10.48), can be estimated by computing the mean value of the

where B (x') is the emitted radiosity from a differential patch at point x'.
Since the BRDF tr,d (Xl) is independent of the incoming and outgoing direc­

tions, it can be moved outside the integral. Thus,

Before we proceed with examining the implementation of physically based ren­
derers we must introduce a mathematical technique that underlies almost all state
of the art physically based rendering algorithms. This technique is known as the
Monte Carlo method. We will use this method to compute accurate estimates of
integrals which are required for the evaluation of the components of the rendering
equation. We refer to this technique as Monte Carlo integration.

The concept of the Monte Carlo method has existed for a long time, but was
first formalised by Metropolis and U1am [Metropolis 49]. Monte Carlo methods
allow us to solve problems by estimating the value of an equation using random
numbers. Historically they have been applied to the solution of problems of a
probabilistic nature.

Let us now examine how the Monte Carlo method can be used to perform
numerical integration (also known as quadrature). Given the definite integral of a
functionj(x) over the interval [a, b] it value, known as the estimand, is given by

10.13 Monte Carlo Method and Monte Carlo Integration

(10.]86)

(10.185)

(10.182)

(10.1 84a)

(l0.183a)

(l0.183b)

(l0.184b)

(
I) IcosCOo)'cos(O;)!

G x, x = '--------:;-'---'-'--'-
Ix _x112

(
I) JcosCOo),cos(O;)1

G x +? X = "'--------::-'--'-'-'-
Ix _x112

3wf = G (x, Xl) ·3Ax'

or 3wf = G (x ~ Xl) ·3Ax l

B (Xl) = Lo (Xl). r cos (0;') ·3wo
J7-l~

or

B (Xl) = [. Lo (x', w~) .cos (0;') ·awolH;

L (Xl ~ x") = L e (Xl ~ x")

+1M jr (X ~ Xl ~ X") .L (x ~ Xl)

·V (x ~ xl).G (X ~ Xl) ·aAx'

Mathematical and Computer Programming Techniques for Computer Graphic

where

390

In this notation the arrows indicate the flow of light energy from point X,

through point Xl, to point x".
In the above equations, M is the union of all the surfaces in the scene, Ax is the

area measure on M, the function G, known as the geometry junction, represents
the change of variables from the original integration variable (step) 3wf to the
new integration variable aAx '. This relationship is given as

For the radiosity family of rendering algorithms we can simplify the rendering
Eq. (10.181), which we have developed for the Monte Carlo ray-tracing family of
algorithms, and replace it by a much simpler expression of the outgoing radiosity.

With the radiosity family of rendering algorithms we assume that all the sur­
faces in the scene are perfect Lambertian reflectors and restrict ourselves to deal­
ing with only diffuse inter-object reflections and diffuse emittance. Under these
conditions the outgoing radiance from any point Xl is constant in all directions,
as the BRDF of a perfectly diffusing surface is independent of the incoming and
outgoing directions of light. Thus, we can rep-lace the complex computation of
the outgoing radiance L o (Xl, w~) of Eq. (10.18]) by a much simpler expression
for the outgoing radiosity B (Xl). To explain how this simplification is justified,
we rewrite Eq. (10.65) to get

f(x)

f(x)

'----1----'---+----------,---1-.... x

10.14 Physically-Based Rendering Algorithms

The eventual output of any computer visualisation process is the production of
a rendered image of the input scene. The geometry of a virtual scene can be
described by a combination of geometric primitives which can either take the
form of a solid representation or a boundary representation.

A solid representation is usually based on an implicit functional representation
that describes the shape (i.e. the volume and boundary) of the object in question.
A representation of this type is often referred to as an F-rep.

Complex object representations of this fonn are composed by blending and
combining the functional representations of primitive solid objects, such as cubes,
cylinders, cones, spheres and super-ellipsoids. Each of these primitives can be
represented by a unique implicit function that allows us to test if a given point in
space lies inside of, on the surface of or outside the solid object. These simple
solid primitives can be combined through blending operations or Boolean alge­
bra operations (such as union, intersection and difference) to form more complex
solid objects. Most manufactured objects can easily be composed in this fashion.
The F-rep is also ideaIly suited for the representation of soft objects and ethe­
real phenomena, such as steam, smoke and fire. It is common to use ray-tracing
rendering techniques to render such arbitrary geometries.

A boundary representation, on the other hand, is composed of a set of bound­
ary surfaces that represent the skin of the solid object. Such boundary surfaces
are represented in the form of parametric equations that describe curved surfaces
delimited by their boundary curves or polygons delimited by their outlines. A
representation of this type is often referred to as a B-rep.

Boolean algebra operations can also be applied to B-reps to generate more com­
plex forms. With a boundary representation it is much more difficult to deter­
mine if a given point in space lies inside, on the surface or outside a solid object.
This makes the implementation of Boolean algebra operations on B-reps more
difficult. B-reps are ideaIly suited, however, for the representation of free-form
surfaces, which are best suited for the description of bodies of cars, ships and
aeroplanes.

Other information that is required by the renderer, in order to be able to render
a virtual scene, includes a description of the light scattering properties of the ur­
faces in the scene, a description of the light sources in the scene and a descripti n
of the virtual camera.

The description of the light scattering properties of the various urface. is pro­
vided through the specification of their respective BRDFs, BTDFs and BSDFs, a~

we have seen earlier in this chapter.
The description of each light source in the scene should include its type (i. '.

point, parallel, linear, area or solid shape light source), its position and direction
of emission, and its emittance characteristics (i.e. its power or intensity and ih
colour).

Additionally, for each surface in the scene that is a light emitter we Illust de
scribe its emittance distribution function.

(10.192)

(10.193)

(10.195)

bXi

FIGURE 10.48. Monte Carlo Integration.

a

The evaluation of the primary estimator for a specific sample Xi is known as an
estimate. Thus, (b - a) . f (Xi) gives us an estimate of the area under the graph
of f(x) in Fig. 10.48. If we use N uniformly distributed random sample points
XI, X2, ... , XN from the range [a, b] to compute N estimates of the integral and

average these, then we get a more accurate estimate of the integral!: f(x)·ax.

I N 1 N
(l)sec = N' L (I) prim = (b - a) .-. L f (Xi)

. N
1=1 i=1

functionf(x) over the interval [a, b] and then multiplying this mean value by
the length of the interval (b - a).

The value of this integral can be estimated by picking a uniform random num­
ber Xi from the interval [a, b] and evaluating f (Xi)' Here the value of the integral
of f (Xi) is called the primary estimator of the integral and is denoted as

(l)prim = 1b

f (Xi) ·ax = (b - a)·f (Xi)

This is known as the secondary estimate or the Monte Carlo estimate of the in­
tegral. As we increase the number of samples in the cOP:Jputation of the secondary
estimate of the integral, this estimate becomes more accurate and at the limit it
becomes equal to the estimand, i.e.

limN---+oo (l)sec = I (10.194)

The standard deviation (J of the secondary estimate (l) sec from the true value
of the integral I is proportional to the square root of the sample size, i.e.

1
(J ()(--

v'N
which means that in order to half the estimation error, we must quadruple the

sample size. See [Dutn~ 94].

~Finally, the description of the virtual camera should include, its position, its
direction of view, its up direction and its horizontal and vertical fields of view
(i.e. the aspect ratio of the frame), and its resolution.

Having got all this information the renderer evaluates the rendering equation in
order to generate an appropriate representation of the illumination in the virtual
scene.

Ideally, physically-based renderers should be able to produce a rendering of the
virtual scene which is indistinguishable from a photograph of its physical coun­
terpart. Thus, achieving the illusive holy-grail of photorealism. Photorealistic
results are best achieved by the accurate evaluation of global illumination effects,
such as glossy reflections and caustics (achieved through specular inter-object il­
lumination) and soft shadows, indirect illumination and colour bleeding (achieved
through diffuse inter-object illumination). In physically-based rendering correct­
ness of the resulting image is paramount, immaterial of the way in which it is
achieved.

There are two main approaches for achieving the production of photo-realistic
images. We can produce such images by using either an object-space approach
or an image space approach.

10.14.1 Object-Space Rendering Algorithms

Object-space approaches compute and store a representation of the outgoing ra­
diance function for each surface in the scene, in a pre-processing step. Then, in
order to generate an image from a given viewpoint, for each pixel of the image
we determine the visible surface or surfaces, using a scan-line, a depth-buffer or a
ray-casting visibility algorithm. The average radiance for this pixel is determined
by computing the average radiance radiated towards the camera from all the sur­
faces that are visible through the pixel using the stored radiance values computed
in the pre-processing step.

Some examples of object-space rendering algorithms include the basic diffuse
radiosity algorithm and other non-diffuse radiosity-style algorithms.

10.14.1.1 The Radiosity Algorithm

The radiosity method was first introduced by Goral er. al [Goral 84]. See also
[Cohen 85] and [Nishita 85]. Radiosity is an object-space physically based ren­
dering technique that deals exclusively with perfectly diffuse inter-object reflec­
tions (i.e. totally incoherent inter-object reflections). The surfaces of objects in
the scene can only be Lambertian reflectors or emitters. Transmitted light and
light reflected in a specular fashion cannot be handled by the basic radiosity
technique.

In static diffuse scenes, of this sort, the emittance distribution function (EDF)
and the BRDFs of the surfaces are direction independent and are only determined
by their spatial location and the wavelength of the light incident on them. This
simplification implies that the outgoing reflected radiance from a given point on
a surface will be perceived with the same intensity and colour regardless of the

viewing position. By reducing the dimension of the radiance, employing these
simplifications, it becomes feasible to store accurate object-space representations
of the radiance of complex scenes. This of course means that the output produced
by the pre-processing step can be used to render images from different viewpoints
in the scene.

With such diffuse environments it is more appropriate to use the radiosity
(i.e. radiant exitance) rather than the radiance to quantify the illumination at a
given location and wavelength.

Some non-diffuse radiosity-style algorithms compute the average radiance emit­
ted by each surface in the scene towards all other surfaces in the scene. See
[Aupperle 93] and [Stamminger 98]. Some other implementations use an angular
rather than a spatial parameterisation to represent the directional dependence of
the radiance. See [Immel 86] and [Sillion 91].

The major advantage of representing the scene illumination in object space is
that we can reuse the results of the radiance computation, output from the pre­
processing step of the these algorithms, to render images of the scene from dif­
ferent viewpoints. Thus these algorithms exhibitframe-to-frame coherence. 3D
graphics hardware can be used to accelerate the rendering stage of these algo­
rithms.

With these algorithms, a significant proportion of the pre-computed radiance
can often be reused even if the geometry of the light emission or the surface
scattering properties of the virtual scene are altered. See [George 90], [Chen 90]
and [Drettakis 97].

The main disadvantage of the object-space rendering algorithms is the exces­
sive amount of storage required to accurately represent the highly direction depen­
dant radiance functions required to represent specular inter-object illumination.
Even for the diffuse inter-object illumination of large virtual scenes, the storage
requirements of these algorithms become prohibitive.

10.14.2 Image-Space Rendering Algorithms

Image-space rendering algorithms compute the average incoming radiance at each
pixel on the fly, without relying on a pre-processing step to compute an object­
space representation of the radiance reflected from each surface of the virtual
scene. This family of algorithms solves the rendering equation for each pixel or
group of pixels in the rendered image. Although the underlying global illumi­
nation method used by all the image-space algorithms is basically the same, the
algorithms themselves are quite different. Examples of such algorithms are the
ray-tracing algorithm [Whitted 80], the distributed ray-tracing algorithm [Cook
84], the path-tracing algorithm [Kajiya 86][Dutre 94], the hi-directional path­
tracing algorithm [Lafortune 93][Veach 94], the Metropolis light transport algo­
rithm [Veach 97b] and the photon-mapping algorithm [Jensen 95a].

The major advantage of the image-space algorithms is that they require very
little storage, as they compute the visible surface solution on a per-pixel basis. In
general these algorithms are more suitable than the object-space algorithms for
more complex virtual scenes and can handle more complex illumination models.

The more sophisticated algorithms of this type can handle both specular inter­
object and diffuse inter-object illumination, as well as, deal with volume rendering
for participating media.

Let us now examine the family of image-space rendering algorithms in more
detail.

10.14.2.1 The Recursive Ray-Tracing Algorithm

The concept of ray tracing first appeared in a 1971 paper by Goldstein and Nagel
[Goldstein 71). In the early eighties, Whitted introduced the concept of recursive
ray tracing [Whitted 80).

Ray tracing is a simple and elegant algorithm that is able to handle specular
inter-object illumination. Thus, it deals with specular reflection and transmission
and generates sharp shadows.

For each pixel of the image, we spawn one primary ray that starts from the
viewing point and passes through the centre of the pixel. If this ray intersects
none of the surfaces in the scene, then the pixel is painted with the background
colour and we proceed to the next pixel. If the ray, however, intersects some of
the surfaces in the scene, we pick the surface whose intersection point is clos­
est to the observer. Once we have identified the closest surface, we compute its
unit nornlal at the point of intersection. This vector is then used in the shading
calculations.

How the light is reflected from a surface depends on the type of surface that
we are dealing with. If the surface is diffuse (rough), the reflected light will
depend only on the illumination arriving directly from the light sources in the
scene. Alternatively, if the surface is specular (smooth), the reflected light will
depend on the illumination arriving directly from the light sources and on the in­
direct illumination arriving on this surface after having been reflected off other
surfaces in the scene or been transmitted through the surface (if it is transpar­
ent). To discover if tlle point is directly illuminated, we have to trace a shadow
ray to each of the light sources. If the surface point is visible from a light
source, then it wilJ receive direct illumination from this source, otherwise it
wilJ not.

If the surface in question is smooth, then we recursively spawn a ray in tlle
reflection direction and if the surface is transparent, ,a second ray in the trans­
mission direction. We folJow these rays repeating the process recursively until
we satisfy one of the recursion termination conditions. The recursion will ter­
minate when one of the three following conditions is met. When the ray hits
a rough surface, in which case the light reflected from this surface is returned
by the ray since this will be the incoming light at the point of origin of the ray.
When the ray misses all sUlfaces in the scene, in which case the ray returns the
background colour. Finally, when a user defined maximum level of recursion has
been reached, no new rays are generated. Upon returning from a recursive call we
accumulate all the calculated radiance contributions.

An outline of the recursive ray-tracing algorithm is presented in Algorithm
10.1. In this algOlithm, the function emitter...shaderO computes the light emit­
ted by an emitter surface and the function direct...shaderO computes the direct
illumination component of the light reflected from the surface.

function recursive_ray_tracing_renderer(scene, image)

for each pixel in the image do
(

level; 0;

generate a primary_ray from the eye to the centre of the
pixel;

pixeLcolour ; trace_ray (primary_ray) ;
}

/ * recursive_ray_tracing_renderer * /

function trace_ray (ray)
(

find the closest point of intersection of the ray with a
surface of the scene;

if there are no intersections then return(background_colour);

compute the unit normal of the closest surface at the point
of intersection;
if surface is emitter

then colour emitter_shader (ray, surface, point);
else colour; 0;

for each light source do

generate a shadow_ray to the light source;

if light source is visible then
colour ; colour
+ direct_shader(point, surface, normal, light) / n_lights;

if surface is specular then

level; level + 1;

if level> max_level then return(colour);

generate the reflected_ray;
colour colour + trace_ray (reflected_ray) ;

if surface is transparent then

generate the transmitted_ray;
colour colour + trace_ray (transmitted_ray) ;

}
return(colour);

) /* trace_ray */

Algorithm 10.1 The outline of the recursive ray-tracing rendering algorithm.

J70
.a. U)"J.Ul1) Ua..-:t\."U .L.-iOHLJUt; dliU ulJdUlll~ lV1UUCJ~ aJlU K~naenngAlgonmnls

function distributed_ray_tracing_renderer(scene, image)

/* Extension for depth of field */
perturb the ray to account for the lens position;

generate a primary_ray from the eye through a random

point in the pixel;

emitter_shader (ray, surface, point);
else

colour

direct_colour = 0;

generate a shadow_ray to a stochastically selected point
on the light source;

if surface is diffuse then

for every shadow_ray do
{

colour = 0;

for each ray sample do

stochastically perturb the ray direction;
colour = colour +

emitter_shader (perturbed_ray, surface, point)
/ n_ray_samples;

if the light source is visible then
direct_colour = direct_colour +

direct_shader (point, surface, normal,
light) / n_shadow_rays;

colour = colour + direct_colour / n_lights;

for each light source do
{

else
colour = 0;

determine if the ray is reflected or absorbed using a Russian
roulette procedure;

if ray is absorbed then return(colour);

if surface is emitter then

if there are no intersections then return (background_colour) ;

compute the unit normal of the closest surface at the point
of intersection;

pixel_colour = colour / n_ray_samples;

J
/* distributed_ray_tracing_renderer */

function trace_ray (ray)
{
find the closest point of intersection of the ray with a
surface of the scene;

,'.

for each primary_ray sample do

colour = 0;

for each pixel in the image do

{

/* Extension for motion blur */
pick a random time within the inter-frame interval to
trace the ray;

"SD::>'i 10.14.2.2 The Distributed Ray-Tracing Algorithm

In 1984, Cook et. al introduced the distributed ray-tracing algorithm [Cook 84].
This algorithm is a refinement of the recursive ray-tracing algorithm that provided
correct and easy solutions to a number of previously unresolved problems, includ­
ing semi-coherent reflections and transmissions, shadows with penumbras, depth

of field and motion blur.
With distributed ray-tracing we spawn a number of primary rays for each pixel

using an appropriately selected probability. The precise probability distribution of
the spawned rays, as well as, their individual direction and origin depend on the
effect that we are attempting to simulate. For instance, to get a semi-coherent re­
flection (i.e. a fuzzy reflection) at a ray intersection point with a diffuse surface in­
stead of spawning a single reflected ray we spawn a number of rays stochastically
distributed around the mirror reflection direction. Similarly, to simulate a semi­
coherent transmission (i.e. translucency) instead of spawning a single transmitted
ray we spawn a number of rays stochastically distributed around the transmittance

direction.
To generate penumbras (i.e. soft shadows), which result from the illumination

produced by area light sources, instead of spawning a single shadow-ray towards
the light source we spawn a number of shadow-rays stochastically distributed on
the surface of the area light source. The illumination received from this light
source is then made proportional to the number of shadow rays that are unob­
structed by other surfaces in the scene.

An outline of the distributed ray-tracing algorithm is presented in Algorithm
10.2. In this algorithm, the function emitter--shaderO computes the light emit­
ted by an emitter surface and the function direct--shaderO computes the direct
illumination component of the light reflected from the surface.

colour = colour + trace_ray (primary_ray) ; generate the reflected_ray;

if surface is diffuse then

Algorithm 10.2 The outline of the distributed ray-tracing rendering algorithm.

This algorithm represents the first effort in an attempt to introduce a certain
degree of physical plausibility in the way the rendering equation is computed.
The physically based image-space renderers that we will examine next attempt to
be physically correct in the way they evaluate the rendering equation.

10.14.2.3 The Path-Tracing Algorithm

Path tracing was introduced by Kajiya in the mid-eighties to provide an efficient
way to solve the rendering equation for both local and global illumination [Kajiya

86].
Path tracing is concerned with solving the integration of light energy resulting

from the direct illumination aniving directly from area light sources and the in­
direct illumination aniving from other surfaces in the scene. These integration
problems are solved using the Monte Carlo integration method, which as we have
seen in Section 10.13, produces an estimate of the value of an integral by aver­
aging a number of random primary estimates of the value of the integral.]n the
context of Monte Carlo ray-tracing algorithms, this means that we need to sto­
chastically spawn a large number of rays within the integration domain in order
to estimate the value of the integral representing the incoming light energy. As
with all Monte Carlo methods, by spawning more stochastically scattered rays

colour = 0;

401Physically Based Lighting and Shading Models and Rendering Algorithms

for each pixel in the image do
{

function path_tracing_renderer(scene. image)
{

(i.e. by evaluating more randomly selected primary estimates) we improve the
accuracy of our result. Thus path-tracing can be seen as a progressive refinement
of the distributed ray-tracing algorithm examined above.

In distributed ray-tracing we spawn a number of stochastically positioned pri­
mary rays through the pixel. When one of these rays is reflected from or transmit­
ted through a diffuse (rough) surface it spawns a number of secondary rays, which
are stochastically distributed around the specular reflection or transmission direc­
tions. This process is repeated recursively until it satisfies one of the recursion
tennination criteria. The recursion termination criteria are one of the following.
A reflected or transmitted ray does not intersect any of the surfaces of the scene.
Alternatively, a stochastic test, known as Russian roulette, is used to determine
if a ray is reflected/transmitted or absorbed. When a ray is absorbed, no further
rays are spawn. This recursive approach can very quickly lead to a combinatorial
explosion of secondary rays. For instance, starting with 100 primary rays, in a
perfectly diffuse scene, after the first reflective bounce we get 1002 = 10,000 rays,
after the second reflective bounce we get 1003 = 1,000,000 rays and so on.

To avoid this type of combinatorial explosion the number of rays spawn at each
bounce had to be kept to a minimum. Kajiya noticed that it was better to focus the
bulk of our computing effort on the first few lighting events that have undergone
the smallest number of reflection or transmission bounces. He decided that it was
a lot more cost effective to spawn a large number of primary rays though the pixel
and only spawn one ray for every secondary bounce stochastically distributed
around the reflection or transmission directions. With this approach we could
afford to spawn thousands of primary rays through each pixel. It is not uncommon
to spawn between 1,000 and lO,OOO rays per pixel.

The only problem with this approach is that we need a large number of primary
rays to avoid noise in the generated image. This noise is related to the error in es­
timating the incoming radiance integral due to the use of Monte Carlo integration
method. The better behaved the incoming radiance function is, the fewer primary
rays we need to estimate its value. A well-balanced radiance function means that
that there are few bright highlights coming from specific directions in the scene.
Thus, in a perfectly diffuse environment we can get away with using as few as
100 primary rays per pixel. Trying to reduce the variance/standard deviation of
the Monte Carlo integration method, thus allowing us to reduce the number of
primary rays that are required to produce an accurate picture, remains an active
research topic.

An outline of the path-tracing algorithm is presented in Algorithm lO.3. In
this algorithm, the function emitter-shaderO computes the light emitted by an
emitter surface and the function direct-shaderO computes the direct illumination
component of the light reflected from the surface.

stochastically perturb the reflected_ray direction;
colour = colour + trace_ray (perturbed_reflected_ray)

/ n_ray_samples;

stochastically perturb the transmitted_ray direction;
colour = colour + trace_ray (perturbed_transmitted_ray)

/ n_ray_samples;

for each ray sample do

{

else
colour = colour + trace_ray (transmitteCLray) ;

Mathematical and Computer Programming Techniques for Computer Graphics

if surface is diffuse then

for each ray sampledo

return (colour) ;

else
colour = colour + trace_ray (reflected_ray) ;

if surface is transparent then

{
generate the transmitted_ray;

} / * trace_ray * /

400

determine if the ray is reflected, transmitted or absorbed
using a Russian roulette procedure;

function trace_ray(ray)
{

if ray is absorbed then return (colour) ;

if surface is transparent and ray is transmitted then
{

403

colour + trace_ray (transmitted_ray) ;

Algorithm 10.3 The outline of the path-tracing rendering algorithm.

stochastically perturb transmitted_ray;
colour = colour + trace_ray (perturbed_transmitted_ray) ;

stochastically perturb reflected_ray;
colour = colour + trace-ray (perturbed_reflected_ray) ;

else
colour = colour + trace_ray (reflected_ray) ;

if surface is diffuse then

compute the reflected_ray;

else
colour

Physically Based Lighting and Shading Models and Rendering Algorithms

else

return (colour) ;

} / * trace_ray * /

10.14.2.4 The Bi-directional Path-Tracing Algorithm

The bi-directional path-tracing algorithm was first developed by Lafortune and
Willems [Lafortune 93] and a year later it was independently developed by Veach
and Guibas [Veach 94]. Although both algorithms achieve very similar results,
their underlying theoretical framework is quite different.

As we have seen above, with path tracing the primary estimator of the radiance
for a given pixel is calculated by tracing a primary ray from the viewing point
through the pixel being considered. At the intersection point of this ray with the
surface of the scene, closest to the eye, one or more shadow rays are traced to­
wards each of the light sources to determine the direct illumination contribution of
each source. This contribution is only accumulated if the light source and the in­
tersection point are mutually visible. Then, we use the Russian roulette stochastic
test to determine if the ray (incident on this surface) is absorbed or if it contin­
ues its random walk, being reflected/transmitted from surface to surface. This
process is repeated recursively until the ray misses all the surfaces in the scene
or is absorbed by a surface. The primary estimator determined in this way by a
single random walk is likely to have a large variance (i.e. it is a poor estimate of
the true value of the radiance). This large variance is mainly due to the way indi­
rect illumination is sampled. The path-tracing algorithm attempts to remedy this
by computing a more accurate secondary estimate that is the average of a large
number of primary estimates.

In a scene that is primarily illuminated by indirect illumination very few shadow
rays are likely to reach any given light source. This will cause a large variance in
both the primary and secondary estimates of the radiance due to direct illumina­
tion, resulting in high frequency noise in the rendered image. Bi-directional path
tracing attempts to resolve this problem by the following technique. Instead of

emitter_shader (ray, surface, point);

generate a primary_ray from the eye through a random
point in the pixel;

/* Extension for depth of field */
perturb the ray to account for the lens position;

/* Extension for motion blur */
pick a random time within the inter-frame interval to
trace the ray;

colour = colour + trace_ray (primary_ray) ;

Mathematical and Computer Programming Techniques for Computer Graphics

for each primary_ray sample do
(

stochastically perturb the ray direction;
colour = emitter_shader (perturbed_ray, surface, point);

}
else

colour

pixel_colour colour / n_ray_samples;
}

/ * path_tracing_renderer * /

generate a shadow_ray to a stockastically selected point on
the light source;

compute the transmitted_ray;

if surface is diffuse then

if light source is visible then
colour = colour + direct_shader (point, surface, normal,

light) / n_lights;

if surface is diffuse then
(

else
colour = 0;

find the closest point of intersection with a surface of the
scene;

for each light source do
{

if surface is emitter then

if there are no intersections then return (background_colour) ;

compute the unit normal of the closest surface at the point
of intersection;

402

just tracing a random walk from the eye into the scene, known as the eye-path, in
parallel we also trace a random walk from a randomly selected light source into
the scene, known as the light-path. See Fig. 10.49.

In constructing the light-path, a light source is selected probabiJistically de­
pending on its power (brightness). Thus, brighter light sources are more fre­
quently selected than dimmer sources. The starting point on the light source and
the starting direction of the light-path are also selected probabilistically depend­
ing on the direction of the power distribution of the source. Thus, directions to­
wards which the light source is brighter (i.e. emits more light) are selected more
frequently than directions in which the source is dimmer.

In constructing the eye-path, the starting direction of the primary ray from the
eye through the pixel is also selected probabilistically according to some random
distribution.

The construction of both the eye and light-paths proceeds as follows. When a
ray hits a surface it is reflected, transmitted or absorbed, depending on a probabil­
ity computed by a Russian roulette procedure. This process is repeated recursively
until the ray is absorbed or it misses all the surfaces in the scene.

When both the eye and light random walk paths have been constructed, we can
proceed with the computation of the primary estimate of the incoming radiance at
the pixel by following the eye-path and accumulating the radiance arriving at each
hit point (intersection point) on this path. To compute the radiance arriving at a
particular hit point, we connect this hit point with every hit point on the light-path
(including the first point, which is a point on the light source). This allows us
to accurately compute the incoming radiance contributions from both direct and
indirect illumination. Each shadow ray that is unobstructed by another surface
contributes to this computation. Having computed the incoming radiance at this
point, we can, in turn, compute the olltgoing radiance from this point. Once we
have reached the end of the eye-path, the algorithm returns a primary estimate of
the incoming radiance at the pixel.

FIGURE 10.49. The geometry of bi-directional path tracing.

405Physically Based Lighting and Shading Models and Rendering Algorithms

compute the transmitted_ray and the outgoing_energy from
the incoming_energy and the surface BTDF;

if ray is absorbed then return();

determine if the ray is to be reflected, transmitted or
absorbed using a Russian roulette procedure;

if no intersections exist then return();

if ray is transmitted and surface is transparent then

return (light_path) ;

trace_lighLpath (scene, lighLpath, lighLray, lighLenergy);

stochastically select a light source, a point on the source
and an initial direction for the light_path;

lighLpath = generate_l ighLpath (scene) ;

1* bidirectional_path_tracing_renderer *1

pixel_colour = colour 1 n_ray_samples;
}

colour = colour + combine_paths (lighLpath, eye_path);

eye_path = generate_eye_path (scene, pixel);

for each pixel in the image do
(

function bidirectional_path_tracing_renderer(scene, image)

for each ray sample do

colour = 0;

} 1* generate_lighLpath *1

function generate_light_path(scene) ;
{

empty lighLpath;

function trace_light_path(scene, path, ray, incoming_energy);
(

compute intersection of the light ray with all the surfaces
in the scene and select the closest intersection_point;

Once again, as this is a probabilistic estimate, a more accurate secondary esti­
mate of the radiance, incoming at the pixel, can be computed by averaging a large
number of primary estimates, which is achieved by spawning a large number of
such random walks per pixel.

An outline of the bi-directional path-tracing algorithm is presented in Algo­
rithm 10.4. This algorithm uses three primitive functions that are not shown,
namely: storeJighLhiLpointO, store_eye_hiLpointO and accumulate_shadeO.

eye path
shae/OIl' rays

screen

light source

Mathematical and Computer Programming Techniques for Computer Graphics404

407

if no intersections exist then return() ;

Physically Based Lighting and Shading Models and Rendering Algorithms

perturb reflected_ray;
trace_eye_path (scene, path, perturbed_reflected_ray,

transmission_factor) ;

determine if the ray is to be reflected, transmitted or
absorbed using a Russian roulette procedure;
if ray is absorbed then return();

if ray is transmitted and surface is transparent then

if surface is diffuse then

compute the transmitted_ray and scale the
transmission_factor using the surface BTDF;

perturb transmitted_ray;
trace_eye_path (scene, pa th, perturbed_transmi t ted_ray,

transmission_factor) ;

if surface is diffuse then

compute the reflected_ray;

else
trace_eye_path(scene, path, reflected_ray,

transmission_factor) ;

trace_path (light-path, eye_path. next-node, colour);

else

trace_eye_path (scene, path, transmitted_ray,
transmission_factor) ;

store_eye..hit-point (path, intersection_point,
transmission_factor) ;

else

return() ;

trace_path (light-path, eye_path, path_colour);

path_colour = 0;

return (path_colour) ;

function combine_paths (light-path, eye_path)
{

function trace_path (light-path, eye_path, colour)
{

if eye_path. next-node is not empty then
{

1;

Mathematical and Computer Programrning Techniques for Computer Graphics

perturb transmitted_ray;
trace_Iight-path (scene, path, perturbed_transmi tted_ray,

outgoing_energy) ;

if surface is diffuse then

else
trace_light_path(scene, path, transmitted_ray,

outgoing_energy) ;

else
trace_Iight_path(scene, path, reflected_ray,

outgoing_energy) ;

if surface is diffuse then
{

perturb reflected_ray;
trace_Iight_path(scene, path, perturbed_reflected_ray,

outgoing_energy) ;

compute the reflected_ray and the outgoing_energy from the
incoming_energy and the surface BRDF;

store_l ight-hi t-point (path, intersection_point,
incoming_energy) ;

empty eye_path;

transmission_factor

else

compute intersection of the eye ray with all the surfaces in
the scene and select the closest intersection_point;

/. Extension for motion blur./ ,.
pick a random time within the inter-frame interval to trace
the eye_ray;

generate a primary eye_ray from the eye through a random
point in the pixel area;

return (eye_path) ;

/. Extension for depth of field ./
perturb the eye_ray to account for the lens position;

trace_eye_path(scene, eye_path, eye_ray, transmission_factor);

return() ;

function trace_eye_path(scene, path, ray, transmission_factor)

function generate_eye_path(scene, pixel);
(

406

409

(b)

(d)

i

.....

(a)

(c)

PhysicalJy Based Lighting and Shading Models and Rendering Algorithms

FIGURE 10.51. Tracing the eye-path from the deepest to the shallowest hit point.

the transmittance characteristics of the surface (thus, accounting for the amount
of radiance being absorbed by this surface). See the right-hand side of Fig. 10.50.

The accumulate...shadeO function computes the reflected radiance outgoing
from a given eye-path hit point and arriving at the hit point that is positioned
immediately before it on the eye-path (i.e. the hit point that is one ray-bounce
closer to the eye than the given hit point). Thus, the computation of the reflected
radiance proceeds from the deepest eye-path hit point (i.e. the hit point which
is the largest number of bounces away from the eye) to the shallowest eye-path
hit point (i.e. the hit point which is the smallest number of bounces away from
the eye) and finally the eye. As this recursive computation proceeds, indirect
illumination arriving from deeper hit points of the eye-path, indirect illumination
arriving from light-path hit points and direct illumination arriving from the light
source are taken into account. See Fig. 10.51(a)-(d).

A more detailed description of this algorithm and the expressions for the cal­
culation of the illumination contributions can be found in [Lafortune 93].

10.14.2.5 The Metropolis Light Transport Algorithm

The Metropolis Light Transport (MLT) algorithm was introduced by Veach and
Guibas [Veach 97bJ. This algorithm, which is used to solve the light transport
problem, is based on a Monte Carlo statistical simulation approach inspired by
the Metropolis sampling technique. The Metropolis sampling technique was first
used in computational physics by Metropolis and Ulam while they were working
on the Manhattan Project [Metropolis 49J, [Metropolis 53J.

/.

if these two points are mutually visible then
accumulate_shade (eye_pathJlode, eye_pathJlode, colour);

generate a shadow ray from the eye_pathJlode.point to the
lighLpathJlode. point;

Mathematical and Computer Programming Techniques for Computer Graphics

for each node in the light path do

return() ;

Algorithm 10.4 The outline of the bi-directional path-tracing rendering algorithm.

FIGURE 10.50. Tracing the eye-path and the light-path.

) / * trace_path * /

The storeJighLhiLpointO function progressively builds the light-path by cre­
ating a linked list of light-path hit points, while the store_eye..hiLpointO function
progressively builds the eye-path by creating a linked list of eye-path hit points.

As can be seen from the function traceJighLpath(), when the light-ray is re­
flected from an opaque surface, then a hit point is entered in the light-path and the
incoming light energy is recorded, and the energy of the reflected ray is attenuated
to account for the reflectance characteristics of the surface. But, when the light­
ray is transmitted through a transparent surface, then a hit point is not entered in
the light-path and the energy of the transmitted ray is attenuated to account for the
transmittance characteristics of the surface. See the left-hand side of Fig. lO.50.
Figure lO.5la shows that after the light path has been constructed we now have
one direct light source and three indirect light sources representing the four hit
points on the light-path.

Analogously, as can be seen from the function trace_eye_pathO, when the
eye-ray is reflected from an opaque surface, then a hit point is entered in
the eye-path and the cumulative transmission factor is recorded. But, when the
eye-ray is transmitted through a transparent surface, then a hit point is not entered
in the eye-path and the cumulative transmission factor is attenuated to account for

408

10.14.2.6 The Photon-Mapping Technique

The photon-mapping technique was developed by Jensen and Christensen as an
efficient alternative to pure Monte Carlo ray-tracing techniques [Jensen 95a]. ThiS

The general approach used in the MLT algorithm can be outlined as follows.
To render an image of a 3D scene, we start with a single light transport path,
known as the curren! path, and we progressively generate a set of alternative paths
by stochastically mutating the current path. We use an appropriately selected
probability, to accept or reject a mutated path, ensuring that the retained paths are
sampled with an order that reflects their statistical contribution to the ideal image.
Then, we estimate this ideal image by sampling a large number of the mutated
paths and by recording their positions on the image plane that is represented by a
2D array in memory.

The MLT algorithm is unbiased, it is capable of handling the most general geo­
metric and BSDF models, it is economical in storage and it can be significantly
faster than other unbiased algorithms. The MLT algorithm is very different from
both the path-tracing and the bi-directional path-tracing algorithms. Unlike other
Monte Carlo methods, instead of randomly sampling the value of a function in
order to estimate the value of its integral, the Metropolis method generates a dis­
tribution of samples to the unknown function value. To achieve this sampling
distribution the MLT algorithm starts with a random sampling of the space of all
light paths in the scene. These initial paths are generated using the bi-directional
path-tracing algorithm and are subsequently cloned and mutated in order to com­
pute the radiance of the final image.

The most important advantage of the MLP algorithm is that it explores the path
space locally, selecting more frequently mutations arrived at by applying minor
incremental modifications to the current path. Using this progressive refinement
approach has the following beneficial consequences. The average cost for each
sample path is relatively small, as very few rays are used. Once an important path
is identified, nearby paths are employed as well, thus spreading the cost of deter­
mining such a "good" path over many neighbouring paths. The set of mutation
operations applied, by the MLT algorithm, to a "good" path is easy to extend. By
selecting mutations that retain certain of the properties of a given "good" path
while changing other properties, we can take advantage of any type of coherence
that is present in the scene. In this way, it is often possible to deal with different
types of lighting problems more effectively by designing specialised mutations to
handle these particular situations.

The propensity of the MLT algorithm to concentrate on incremental changes
to a path, once it has found a "good" path, also leads to one of the main weak­
nesses of this algorithm. With scenes that do not exhibit space coherence, the
algorithm may be caught by one particular feature and be prevented from co~­

verging quickly. Consider, for instance, a scene containing a surface with a gnd
of holes lit from behind. The MLT algorithm can be "trapped" by one of the holes
and will fail to investigate properly the illumination from neighbouring holes.

A more detailed explanation of the algorithm can be found in [Veach 97a] and
[Veach 97b].

10.14.2.6.1 The Photon-Mapping Pass

The photon-mapping pass is an essential pre-processing step of any rendering
algorithm that uses the photon-mapping technique. During this pass photons are
emitted from the light sources, their paths are traced through the scene and when
they hit a diffuse surface their lqcation and power are recorded in the photon map.

411Physically Based Lighting and Shading Models and Rendering Algorithms

technique de-couples the representation of the illumination from the representa­
tion of the geometry of the scene. Thus, allowing us to handle arbitrarily complex
geometric models and BRDFs.

To best visualise the photon map we may think of it as the cache of all the
light paths in the bi-directional path-tracing algorithm. The photon map could
indeed be used for this purpose. It is however used to estimate the illumination
in the scene based on an estimation of the light energy density. The estimation
error resulting from the use of the photon map, to estimate the illumination of
the scene, results in low frequency noise, as opposed to the high frequency noise
resulting from using the traditional Monte Carlo techniques. The density estima­
tion method that uses a photon map is much faster than the pure Monte Carlo
techniques. The main disadvantage, however, of this estimation method is that it
is biased.

The algorithm that generates, stores and uses illumination as points on the sur­
faces of objects in the scene is known as photon mapping and the data structure
that is used to store these illumination points is known as the photon map. The
technique that is used to generate the illumination points is known as the photon­
tracing algorithm. Thus, a renderer that uses the photon-mapping technique has
two distinct passes. The photon-mapping pass, which builds the photon map
data structure by spawning photon rays from the light sources and tracing them
through the objects in the scene and the rendering pass, which renders the scene
using the illumination information stored in the photon map (thus speeding up the
rendering process).

As this has proved to be a very influential algorithm, we will examine it in some
detail.

10.14.2.6.2 Emission ofPhotons

A large number of photons are emitted by each light source in the scene. The
power (i.e. the wattage) of a light source is divided equally among all the photons
that it emits. Thus, each emitted photon transports a fraction of the power of the
light source. The Jensen-Christensen model supports many different types of light
Source.

Diffuse poinT light sources emit photons uniformly in all directions using one
of two Monte Carlo sampling techniques. ExpliciT sampling, which randomly
selects two spherical coordinate angles, and rejecTion sampling. which randomly
generates points inside a unit cube and selects the first such point that lies inside
the unit sphere.

Spherical lighT sources emit photons in all directions. First a random point is
selected on the Urface of the light source sphere and then a random direction is

Mathematical and Computer Programming Techniques for Computer Graphics410

light SOl/rce

413

(10.196)

Physically Based Lighting and Shading Models and Rendering Algorithms

FIGURE 10.53. Photons in the neighbourhood of point x.

photolls stored ill the photoll map

The photon map is stored as a left-balanced kd-tree data structure, which is
very efficient to traverse [Bentley 79]. Essentially, the kd-tree is an axis-aligned
b1l1ary space partition tree (ESP-tree). Each node of this tree stores a photon.
Each photon IS represented by the x, y, ;: coordinates of the point of incidence of
the photon rayon a surface (which is stored as three floats). by its power (which
IS stored as four bytes). by its direction vector (which is given by the () and !/J
angles and stored in compressed form as two bytes) and by a kd-tree fla<7 (which
is stored as a short). b

Once the photon-tracing algorithm is completed the kd-tree is balanced to speed
up the random access of its nodes.

10.14.2.6.5 Photoll Density Estimation

The photon map represents the incoming flux on the surfaces of the scene. Each
phot?n can be thought of as transporting a package of energy that represents a
fractIOn of the power of the light source that emitted it. Thus, the photon map
contams information indicating that a given region of the scene has received some
direct or indirect illumination from a light source.

L?oking at a single photon we can not tell how much light a given region has
receIved and we must compute the photon density ap/aA and to estimate the
irradiance for a small region surrounding a given point on a sUlface of the scene.
We can approximate the incoming flux Pi (x) at a point x on a surface of the
scene by finding the n photons, stored in the photon map, which are the closest
neighbours of this point. All these photons will be enclosed in a sphere of radius
rx and each photon will have power 6,Pp (wp). See Fig. 10.53.
. Now, the outgoing radiance L r (x. wx) reflected from this point can be approx­
Imated as

specl/lar swfaces

Mathematical and Computer Programming Techniques for Computer Graphics

As we have seen above, when a photon hits a specular surface it can be reflected,
transmitted or absorbed. When it hits a non-specular surface, however, it is stored
in the photon map. See Fig. 10.52. Photons represent incoming illumination (flux)
at a given point on the surface. Thus, we can use the photons, stored in the photon
map, to approximate the reflected illumination at several points on the surface.

non-specular swface

photons that will be stored
in the photon map

FIGURE 10.52. Photon tracing.

10.14.2.6.4 Storage ofPhotons

412

10.14.2.6.3 Scattering and Tracing ofPhotons

After a photon is emitted by a light source, it is traced through the scene by the
photon-tracing algorithm. The photon tracing algorithm works in a very similar
fashion to a ray tracing algorithm, except that photons distribute flux while rays
accumulate radiance. This is significant in the case of refraction, where radiance
changes according to the relative refractive index of the interface surface while
flux does not.

When a photon arrives at an interface surface it can be reflected, transmitted or
absorbed. This determination is made using a Russian roulette procedure, which
acts as an importance-sampling technique. Here, a probability distribution func­
tion serves to eliminate the statistically insignificant parts of the domain of our
problem.

selected on the hemisphere above this point. A similar procedure is followed for
polygonal square light sources.

For directed light sources, which are used to simulate very distant light sources,
we enclose the scene in a bounding sphere which when projected onto the ground
plane produces a circle. Random points in this circle can be used as the termi­
nating points of incoming photon beams from the direction of the parallel light
source.

Complex three-dimensional shapes can also be used as light sources. In this
case, the photon ray emission points and directions are selected using a rejection­
sampling scheme.

If we assume that the region around point x is flat, then the intersection of the
surface and the sphere containing the photons can be taken a

415

(10.199)

(10.200)

(10.201)

fr (x, Wi, Wo) = fr,s (x, Wi, Wo) + fr.d (x, Wi. Wo)

L i (x, Wi) = Li,l (x, Wi) + Li,c (x, Wi) + Li,d (x, Wi)

t'nyslcaJJy tlased LIghting and Shading Models and Rendering Algorithms

where Nx is the unit normal vector of the surface at point x.
Substituting Eqs. (10.199) and (10.200) into Eq. (10.201), we get

by tracing photons towards all the surfaces in the scene and storing them when
they reach a diffuse surface. Such photons may be absorbed or further reflected
or refracted to reach other surfaces.

The final image is rendered using a distributed ray-tracing algorithm. Here,
the incoming radiance at each pixel is computed by averaging a large number of
sample estimates. As we have seen earlier in this chapter, a BRDF. fr, is often
composed of a specular term, fr.s, and a diffuse term, fr,d. Thus,

Similarly, the incoming radiance can be thought of as the sum of three incom­
ing radiances. The incoming direct illumination radiance Li,l (x, Wi), which is
illumination arriving on the surface directly from the light sources. The incoming
caustics illumination radiance Li,c (x, Wi), which is indirect illumination arriv­
ing on the surface as a result of one or more specular reflections or transmissions.
The incoming indirect illumination radiance Li,d (x, Wi), which is indirect illu­
mination arriving on the surface as a result of one or more diffuse inter-object
reflections or transmissions. Thus, the incoming radiance can be written as

Recall, from Section 10.7.3, that the outgoing reflected radiance from a point x
on a surface is given as

L o (x, w o) = i? fr (x, Wi, Wo) ·Li,l (x, Wi) '(Wi 0 Nx)·aWi
11.i

+£2 j,',s (x, Wi, Wo)' [Li,c (x, Wi) + Li,d (x, W;)] '(Wi 0 NxHwi
I

+ [2 j"d (x, Wi, Wo) ·Li,c (x, Wi) '(Wi 0 NxHwi
111.;

+£2 fr.d (x, Wi, Wo) ·Li,d (x. Wi) '(Wi 0 Nx)·aWi (10.202)
I

This equation or some approximation of it i used by the ray tracer to compute
each sample estimate for the radiance incoming at a given point. At the closest
intersection of the primary ray emanating from the eye, we evaluate Eq. (10.202).
Ideally we would use the same equation at all subsequent ray bounces (ray hits),
but this would be computationally too expensive and in any case would not be the
most appropriate use of computing time. Thus, we try to use the accurate compu­
tation as infrequently as possible and use an approximate computation in all other
cases. An accurate computation is only used on the first bounce of the primary

00.197)

(10.198)

?
6A = 7[·r;

MatnemaucaJ ana Lomputer t'rogrammmg Jecnfil4ue~ lUI '--UllljJUleJ \.JlajJIlJC~4J4

Substituting Eq. (10.197) into Eq. (10.196) we get an estimate of the outgoing
reflected radiance from point x . II Thus,

The accuracy of this estimate depends on the number of photons in the photon
map. The larger this number the better the estimate.

10.14.2.6.6 The Rendering Pass

The photon map created during the photon-tracing pass can now be used to render
an image of the scene. The renderer is composed of a simple ray tracer that uses
the radiance estimate to determine the reflected radiance component due to all the
diffuse reflections and a recursive ray tracer that determines the reflected radiance
component due to all the specular reflections and transmissions.

Unlike other Monte Carlo ray-tracing techniques, photon mapping is ideally
suited for rendering caustics. Caustics occur when light that has been reflected
from or transmitted through one or more smooth (specular) surfaces reaches a
rough (diffuse) surface.

To improve the quality of the rendered diffuse inter-object reflections, often
perceived as colour bleeding, we need to increase the number of photons that
are stored in the photon map and the number of photons that are included in the
neighbourhood of a given point when computing the diffuse component of the
reflected radiance estimate at this point.

For scenes that exhibit an even balance of specular and diffuse reflections we
can use two photon maps. One map, known as the global photon map, to store
the indirect illumination, and a second map, known as the caustics photon map,
to store caustics. The caustics photon map can be used by the recursive ray tracer
that computes the direct illumination.

The caustics photon map contains photons that have undergone at least one
specular reflection or transmission before arriving at a diffuse surface. After a
collision with a diffuse surface photons are absorbed. In the photon-tracing pass,
while populating the caustics photon map it is desirable to concentrate the emis­
sion of photons in the directions of specular surfaces in the scene. These could
be identified either manually (allowing more artistic control) or automatically by
the renderer. It is possible to use a projection map (from the point of view of the
light source) to determine in which directions shinny surfaces lie so that we can
concentrate the photon emissions in these directions.

The global photon map contains all the photons that reached a diffuse surface
in the scene. These photons represent direct and indirect illumination, as well as.
caustics. The rendering algorithm must ensure that the caustics term is not added
more than once in the rendering equation. The global photon map is populated

L o.s (x, wo) = 12 fr,s (x, Wi, Wo)' [Li.e (x. Wi) + Li,d (x, Wj)] . (Wi 0 N x) ·aWi
r(

(10.204)

This integral is evaluated using a Monte Carlo ray-tracing algorithm with an
importance sampling optimisation, which is based on the specular BRDF fr.s·

Importance sampling is an optimisation technique employed to improve the per­
fonnance of the Monte Carlo method [Jensen 95c].

ray and on any subsequent bounces where the ray-surface intersection point is
closer to the ray-origin than a given threshold. This latter condition is necessary
to enhance the likelihood of accurate colour-bleeding occurring at convex corners
of the scene, where the distance between two ray bounces is short.

Next, let us consider the individual components of the outgoing radiance from
Eq. (10.202).

The direct illumination reflected radiance term, Lo,1 (x, wo), is given by

417

ClO.20S)

00.206)

Physically Based Lighting and Shading Models and Rendering Algorithms

The caustic illumination reflected radiance term, L o.e (x, wo), of the outgoing
radJance of Equ. (10.202) is given by

Lo,e (x, wo) = 12 f,',d (x, Wj. Wo) ·Li,e (x, Wi) '(Wi ONx)·8w,
7-(

When an accurate value for L o.c is required, then we evaluate this integral using
Monte Carlo integration and the contents of the caustics photon map. When only
an approximate value for L o.e is required, then we do not evaluate this equation
at all but we rely on the caustics contribution included in the specular radiance
estimate from the global photon map.

Finally, the indirect illumination reflected radiance term, Lo.d (x, w o), of the
outgoing radiance of Equ. 00.202) is given by

Lo,d (x, wo) = r 2 fr,d (x, Wi, Wo) ·Li,d (x, Wi) '(Wi ONx)·8wi
J'H;

This outgoing radiance term represents light that since leaving the light source
has been reflected, at least once, from a diffuse surface, resulting in incoherent
(soft) illumination. When an accurate value for Lo,d is required, then we eval­
uate this integral using Monte Carlo ray tracing. This is done by spawning a
large number of rays, stochastically distributed around the reflection/transmission
direction, and averaging the computed radiance from all the primary estimates.
When only ~n approximate value for Lo.d is required, then we compute it using a
radJance estJmate from the global photon map, which contains the direct, indirect
and caustic illumination contributions.

10.14.2.6.7 Observations

Photon mapping is a very elegant technique that allows us to handle many differ­
ent lighting phenomena and to generate photo-realistic images that are physically
based or at least physically plausible. In conclusion we note that:

• Photon mapping is an elegant rendering technique that provides a complete
global illumination solution for large scene geometries with complex material
properties.

• The photon mapping technique separates the storage of the photons from the
storage of the geometric representation of the scene. With complex scenes this
represents a clear advantage over object-space finite element methods of ren­
dering.

• Any rendering algorithm that uses photon maps must perform a final gather
(aggregation) of light flux which requires a number of expensive near neigh­
bourhood operations.

• Several optimisations exist that speed up the performance of this algorithm sig­
nificantly.

A more detailed description of this technique can be found in Jensen's book
[Jensen OJ b] on which the above discussion is based.

(10.203)

Mathematical and Computer Programming Techniques for Computer Graphics

Lo.l (x, wo) = r fr (x, Wi, Wo) ·Li./ (x, Wi) '(Wi o Nx)-(JWi
J'Hl

This term is frequently the most important part of the outgoing reflected ra­
diance, since it is responsible for depicting shadows (to which the eye is most
sensitive). So it must be computed accurately.

From every intersection point x shadow rays are cast towards each light source
in the scene. With area light sources, more than one shadow rays are required per
light source so as to generate convincing penumbra areas. This is an expensive
process. In an attempt to improve its efficiency the algorithm can be modified to
emit shadow photons (anti-photons) with negative light energy [Jensen 9Sb). In
the photon-tracing pass, when the photon map is being populated, shadow photons
are emitted by each light source. When a shadow-photon ray is cast, starting from
the second closest ray-surface intersection and including all subsequent intersec­
tions we deposit a negative photon if the intersected surface is facing the light
source. In the rendering pass, if all the photons in the region of a surface point x
are positive, then the point is deemed to be visible by the light source, if all the
neighbouring photons are negative, then it is deemed to be hidden from this light
source, otherwise it is deemed to be in the penumbra region of this light source. In
the latter case we have to use a number of rays to discover the fraction of lighting
that the point receives from this light source. Thus, we are only forced to perform
the expensive shadow-ray casting operation for the regions of the scene that fall
within the penumbra areas associated with this particular light source. This im­
plementation of the algorithm requires a modification of the photon data structure
to identify the light source that emitted the photon and to indicate whether the
photon is positive or negative.

The specular illumination reflected radiance term, Lo.s (x, w o), ofthe outgoing
radiance ofEq. (10.202) is given by

416

References

10.14.3 Hybrid Multi-Pass Rendering Algorithms

A promising approach is to use a hybrid algorithm for rendering, which involves

multiple passes. The first pass of such an algorithm adopts an object-space ap­

proach and deals with the diffuse inter-object illumination problem, by comput­

ing and storing the outgoing radiance diffusely reflected from the surfaces of the

scene. The second pass of such an algorithm adopts an image-space approach and

deals with specular inter-object illumination, by accessing the pre-stored object­

space solution and by computing (on the fly) for each pixel the radiance con­

tributed by the specular inter-object illumination, which would be impossible to

compute and store in the first pass.

Such algorithms can be designed to take advantage of the strengths of both

object-space and image-space techniques.

Examples of such multi-pass algorithms are found in [Wallace 87], [Sillion 89],
[Chen 91], [Jensen 96] and [Suykens 99].

[Amanatides 84] Amanatides, J. Ray tracing with cones. Proceedings ofSIGGRAPH 84.
Computer Graphics, Vol. 18, No.3, p.p. 129-135,1984.

[Ashikmin OOa] Ashikmin, M. and Shirley, P. An anisotropic Phong light reflection
model. Technical Report UUCS-OO-014, Computer Science Depart­
ment, University of Utah, p.p. 1-11, June 2000.

[Ashikmin OOb] Ashikrnin, M. and Shirley, P. An anisotropic phong BRDF model.
Journal of Graphics Tools, Vol. 5, No.2, p.p. 25-32,2000.

[Ashikmin OOc] Ashikrnin, M., Premoze, S., and Shirley, P. A microfacet-based BRDF

generator, Proceedings ofSIGc"RAPH 2000, Computer Graphics, ACM
PresslACM SIGGRAPHIAddison Wesley Longman, p.p. 65-74,2000.

[Aupperle 93] Aupperle, L. and Hanrahan, P. A hierarchical illumination algorithm
for surfaces with glossy reflection". Proceedings of SIGGRAPH 93,
Computer Graphics, Vol. 27, No.4, p.p. 155-1621993.

[Beckmann 63] Beckmann, P. and Spizzichino, A. The Scattering of Electromagnetic
Wavesfrom Rough Surfaces. Pergarnin Press, Oxford, England (1963).

[Bennett 61] Bennett, R. A. and Porteus, J. O. Relation between surface roughness
and specular reflectance at normal incidence, Journal of the Optical
Society ofAmerica, Vol. 51,p.p. 123-129,1961.

[Bentley 79] Bentley, J. L. and Friedman, J. H. Data structures for range searching,
Computing Surveys, Vol. II, No.4, p.p. 397-409, 1979.

[Blinn 77] Blirm, J. F. Models of light reflection for computer synthesized pictures.
Proceedings of SIGGRAPH 77, Computer Graphics, Vol. II, No.2,
p.p. 192-198,1977.

[Chen 90] Chen, S. E. Incremental radiosity: An extension of progressive radiosity
to an interactive image synthesis system. Proceedings of SIGGRAPH
90, CompUTer Graphics, Vol. 24, No.4, p.p. 135-144, (1990).

[Chen 91] Chen, S. E., Rushmeier, H. E., Miller, G., and Turner, D. A progressive
multi-path method for global illumination, Proceedings ofSIGGRAPH
91, CompUTer Graphics, Vol. 25, No.4, p.p. 165-174.1991.

[Clarke 85] Clarke, F. J. J. and Parry, D. J. Helmholz reciprocity: Its Vlvidity and
application to reflectometry, LighTing Research and Technology, Vol.
17, No. I,p.p. 1-11,1985.

419

Cohen. M. F. and Wallace, J. R. Radiosity and Realistic Image
Synthesis, Academic Press. San Diego, CA (] 993).

Cohen, M. F. and Greenberg, D. P. The hemi-cube: A Rdriosity
solutIOn for complex environments. Proceedings of SIGGRAPH 85,
Computer Graphics, Vol. 19, No.3, p.p. 31-40, J985.

Cook" R. L. and Torrance, K. E. A reflection model for computer
graphICS. Proceedings SIGGRAPH 81, Computer Graphics, Vol. 15,
No.4, p.p. 307-3 J6, 1981,

Cook, R. L. and Torrance. K. E. A reflection model for computer
graphics. ACM Transactions on Graphics, Vol. I, No. I, p.p. 7-24.
1982.

Cook, R., L., Porter, T. and Carpenter. L. Distributed ray tracing. Pro­
ceedings of SIGGRAPH 84, Computer Graphics, Vol. 18, o. 3, p.p.
137-145, 1984.

Ditchbum, R. W. LighT, Vols. I and 2. Academic Press, London
(1976).

Dorsey, J., Edelman, A., Jensen, H. w., Legakis, J., and Pedersen,
H. K. Modelling and rendering of weathered stone. Proceedings of
SIGGRAPH 99, pp. 225-234. Addison-We ley, Reading, MA (1999).
Drettakis, G. and Sillion, F., X. Interactive update of global illumi­
nation using a line-space hierarchy. Proceedings of SIGGRAPH 97.
Computer Graphics, Vol. 31, No.4, p.p. 57-64, 1997.

Duderstadt, J. J. and Martin, W. R. Transporr Theory. John Wiley &
Sons, New York (1979).

Dutre, Ph. and Willems, Y. D., Importance-Driven Monte Carlo light
traclllg. Proceedings of The Fifth Eurographics Workshop on Render­
ing, Darmstadt, Germany, Eurographics Association, p.p. 185-194
(1994).

Dutre, Ph. Mathematical Framework and Monte Carlo Algorithms for
Global Illumination in Computer Graphics. Ph.D Thesis, University
of Leuven (1998).

George: D. w., Sillion, F. X., and Greenberg, D., P. Radiosity
Redlstnbutlon for Dynamic Environments, IEEE, CompUTer Graphics
and Applications, Vol. 10, No.4, p.p. 26-34, July 1990.

Goldstein, R. A. and Nagel, R. 3-D Visual Simulation. SimulaTion,
p.p. 25-31 Jan 1971.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. Mod­
eling the interaction of light between diffuse surfaces. Proceedings of
SIGGRAPH 84, Computer Graphics, Vol. 18, No.3. p.p. 213-222
1984. '

Hall, R. illuminaTion and Color in Compurer GeneraTed Imagery.
Springer- Verlag. New York (1989).

Hanrahan, P. and Krueger, W. Reflection from layered surfaces due to
subsurface scattering. Proceedings ofSIGGRAPH 93, 165-174, ACM
Press, ew York (1993).

Immel, D. S.. Cohen. M. F. and Greenberg. D. P. A radiosity
method for non-diffuse environments. Proceedings ofSIGGRAPH 86,
CompUTer Graphics, Vol. 20. o. 4. p.p. 133-142. 1986.
Jenkins. F. A. and White, H. E. Fundamell1als of Oplics. McGraw­
Hill, New York (1976).

Jensen, H. W. and Christensen. N. J. Photon maps in bi-directional
Monte Carlo ray tracing of complex objects. CompUTers & Graphics.
Vol. 19. No.2, p.p. 215-224, 1995.

Physically Based Lighting and Shading Models and Rendering Algorithms

[Drettakis 97]

[Dorsey 99]

[Ditchbum 76]

[Cohen 85]

[Cook 82]

[Cohen 93]

[Cook 81]

[Cook 84]

[Duderstadt 79]

[Dutre 94]

[Dutre 98]

[George 90]

[Goldstein 71]

[Goral 84]

[Hall 89]

[Hanrahan 93]

[Immel 86]

[Jenkins 76]

[Jensen 95a]

Mathematical and Computer Progranuning Techniques for Computer Graphics418

[Jensen 95bJ

[Lewis 93]

[Jensen 01 b]

421

Nishita. T. and Nakamae. E. Continuous tone representation of three­
dimensional objects taking account of shadows and inter-reflection.
Proceedings ojSIGGRAPH 85. COl1lpll/er Graphics, Vol. 19, No.3.
p.p. 23-30. 1985.

Palik, E. D. Handbook oj Optical Constants oj Solids. Academic
Press. ew York, NY (J985).

Pharr. M. and Hanrahan, P. Monte Carlo evaluation of non-linear
scattering equations for subsurface reflection. Proceeding.1 oj SIG­
GRAPH 2000, pp. 75-84. Addison-Wesley. Reading, MA (2000).
Sancer. M. I. Shadow-corrected electromagnetic scattering from a
randomly rough surface, IEEE TrallSactions on AllIennas and Prop­
agation, Vol. 17, No.5, p.p. 577-585, 1969.

Schlick, C. A customizable reflectance model for everyday
rendering. Proceedings of the Fourth Eurographics Workshop on
Rendering. Series EG 93 RW. Paris, France, p.p. 73-84 June 1993.
Shirley, P. Physically Based Lighting Calculati'ons for Computer
Graphics, Ph.D Thesis. University of Illinois at Urbana Champaign
Jan 199 I.

Sill ion, F and Puech, C. A general two-pass method integrating spec­
ular and diffuse reflection. Proceedings ofSIGGRAPH 89, COlllpUler
Graphics, Vol. 23, NO.4. p.p. 335-344, 1989.
Sill ion, F, Avro, J., Westin, S., and Greenberg. D. P. A global illumi­
nation solution for general reflectance distributions. Proceedings oj
SIGGRAPH 91. Computer Graphics, Vol. 25, No.4, p.p. 187-196
1991.

Stan1minger, M., Slusallek, Ph., and Seidel, P. H. Three point cluster­
ing for radiance computations. Proceedings oj the Eurographics
Rendering Workshop 98. Eurographics Association, p.p. 211-222,
1998.

Suykens, F and Willems. Y. D. Weighted multi-pass method for
global illumination. Proceedings oj Eurographics 99, Computer
Graphics Forum, Vol. 18, 0.3, p.p. 209-220, 1999.
Ton·ance. K. E. and Span-ow. E. M. Theory of off-specular reflection
from roughened surfaces, Journal of the Optical Society ojAmerica.
Vol. 57, No.9, p.p. 1105-1114,1967.

Veach, E. and Guibas. L. J. Bi-directional estimates for light trans­
port. Proceedings oJthe Fifth Eurographics Workshop on Rendering.
Darmstadt, Gennany. Eurographics Association. p.p. 147-162 1994.
Veach, E. Robust Monte Carlo Methods for Light Transport. Ph.D
Thesis, Department of Computer Science. Stanford University
(1997).

Veach, E. and Guibas, L. J. Metropolis light transport. Proceedings
ofSIGGRAPH 97. Compuler Graphics. Vol. 31. No.4, p.p. 65-76.
1997.

Wallace. 1. R.. Cohen. M. E. and Greenberg. D. P. A two-pass
solution to the rendering equation: A synthesis of ray tracing
and radiosily methods. Pmceedillgs of SIGGRAPH 97. COlllputer
Graphics. Vol. 21, No.4. p.p. 311-320.1987.
Whitted. T. An improved illumination model for shaded display.
COl1llllunicatiOfls of the ACM. Vol. ~3. No.6. p.p. 3-13-349. 1980.
hllp:llwww.luxpop.col1l

Physically Based Lighting and Shading Models and Rcndering Algorithms

[Nishita 85J

[Palik 85J

[Phan' OOJ

[Sancer 69]

[Schlick 93]

[Shirley 91]

[Sill ion 89]

[Sillion9l]

[Stamminger 98]

[Suykens 99]

[Ton'ance 67]

[Veach 94]

[Veach 97a]

[Veach 97b]

IWallace 87]

IWWWI]

[Whitted 80]

Jensen, H. W. and Christensen, N. J. Efficiently rendering shadows
using the photon map. Proceedings oj CompuGraphics 95, p.p.
285-291 Dec 1995.
Jensen, H. W. Importance driven path tracing using the photon map.
Proceedings oj the Eurographics Rendering Workshop 95. Euro­
graphics Association, p.p. 326- 335, June 1995.
Jensen, H. W. Global illumination using photon maps. Proceedings
oj the Eurographics Rendering Workshop 1996. Springer-Verlag.
Vienna. p.p. 21-30, 1996.
Jensen, H. W., Legakis. J., and Dorsey, 1. Rendering of wet mate­
rials, In: C. Lischinski and G. W. Larson (Eds.), Rendering Tech­
niques '99. Springer-Verlag, Vienna (1999).
Jensen, H. W., Marschner, S.. Levoy, M., and Hanrahan, P. A
practical model for subsUtface light transport. Proceedings oj
SIGGRAPH 2001, p.p. 399-408. Addison-Wesley, Reading MA
(2001).
Jensen, H. W. Realistic Image Synthesis using Photon Mapping. A.
K. Peters Ltd., Natick, Massachusetts (2001).
Kajiya, J. T. The rendering equation. Proceedings oj SIGGRAPH
86, Computer Graphics, Vol. 20, No.4, p.p. 143-150, 1986.
Lafortune, E. P. and Willems, Y. D. Bi-directional path tracing.
Proceedings of the International Computer Graphics and Visual­
isation Techniques, CompuGraphics 93. Avlor, Portugal, p.p. 145­
1531993.
Lafortune, E. and Willems. Y. Using the modified Phong
reflectance model for physically based rendering. Technical Report
CW 194, Department of Computer Science, K.U., Leuven, p.p. 1­
18, Nov 1994.
Lafortune, E. P. F, Foo, S. c., Torrance, K. E., and Greenberg D. P.
Non-linear approximation of ~eflectancefunctions. Proceedings of
SIGGRAPH 97, Computer Graphics, No. 31, p.p. 117-126, 1997.
Lewis, R. R. Making shaders more physically plausible.
Proceedings of the Fourth Eurographics Workshop on Rendering,
Paris, France. Eurographics Series EG 93 RW, pp. 47-62 June
1993.
Metropolis, N. and Ulam, S. The Monte Carlo method, Journal oj
the American Statistical AssocibTion, Vol. 44, No. 247, p.p. 335­
341,1949.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A.
H., and Teller, E. Equations of state calculations by fast computing
machines, Journal oJ Chemical Physics 21, p.p. 1087-1091,1953.
Neumann. L., Neumann, A., and Szirmay-Kalos L. Compact
metallic reflectance models, Computer Graphics Forum (Euro­
graphics '99). The Eurographics Associalion and Blackwell Pub­
lishers, Vol. l8,No. 3,p.p. 161-172,1999.
Neumann. L., Neumann, A., and Szirmay-Kalos L. Reflectance
models with fast importance sampling. Computer Graphics Forum,
Vol. 18, No.4, p.p. 249-265. J999.
Nicodemus. F E., Richmond. J. C.. Hsia. J. 1.. Ginburg. 1. WoO
and Limperis. T. Geometric considerations and nomenclature for
reflectance. Monograph 161. National Bureau of Standards (US)
Oct 1977.

Mathematical and Computer Programming Techniqucs for Computer Graphics

[Neumann 99b]

[Metropolis 49]

[Nicodemus 77]

[Metropolis 53]

[Neumann 99aJ

[Kajiya 86]

[Lafortune 93]

[Lafortune 97]

[Jensen 95c]

[Jensen 96]

[Jensen Ola]

[Lafortune 94]

[Jensen 99]

420

	1 001.pdf
	2 001
	3 001
	4 001
	5 001
	6 001
	7 001
	8 001
	9 001
	10 001
	11 001
	12 001
	13 001
	14 001
	15 001
	16 001

