Assignment 2

22 November 2009

Start from the example "creating" in the "Color" group. Use a size of 400 by 400 . Make things dependent on the width (the variable "width" is a system variable). This will allow you to change the windowsize without having to change anything else.

Determine the upper left corners and the size of Albers' squares. There should be four of them, one inside the next. Assume the innermost is of size 4a, where a is some still unknown unit. Then from there to the left and to the right, distances are $2 \mathrm{a}, 2 \mathrm{a}, 2 \mathrm{a}$. Distances to the top of the canvas are 3a, 3a, 3a. Distances to the bottom are a, a, a. These conditions are enough for you to determine everything.
Design a schema for changing the colors from one square to the next. Start from an arbitrarily chosen outer color (r, g, b). Move inside through some systematic that you design and put into a program.
The systematic could, e.g., be to move along a diagonal $(r, g . b)$ to $(r+10, g+10, b+10)$ etc. Or to move in a circle: from (r, g, b) to (g, b, r) to (b, r, g) etc.

Generate a few such cases and record what you did.

