
Chinese Whispers.
Semiotically Mediating Between Idea and Program

Matthias Krauss, Frieder Nake, Susanne Grabowski
Informatik Universität Bremen

P.O. Box 330440
D-28334 Bremen, Germany

{krauss, nake, susi}@informatik.uni-bremen.de

Abstract

The relation of aesthetics and computation has intrigued
researchers, artists, and philosophers throughout the
history of Western mind. In a long-range project,
compArt, we take computer art as a case to explore and
create sites for learning, art, and programming. We set up
situations for students to gain insight into the algorithmic
fabric of certain classes of graphic art. An indicator of
the students‘ comprehension is the reformulation of
hidden algorithms. An easy exercise is to use tools of a
GUI to generate replicas. A greater challenge is a precise
symbolic description of classes of graphics. We use the
children’s play of Chinese whispers as an interface
metaphor for the description of data flow. The user is not
required to know anything about data flow when he sets
up a communication structure between agents and thus
creates a total algorithmic behavior from local semantics.
We bridge the gap between vague idea and precise
formalism by semiotic embedding.

1. Introduction

Programming may be considered the activity of trans-
forming a vague idea into the precise description of an
algorithmic process. The question, “How to make our
ideas clear”, allows for a simple answer: write a program!
This answers Peirce‘s question [16] because the computer
now serves as an impartial interpreter.

If we accept this proposition, the question is one of
algorithmic communication or of communicative algorith-
mics. The situation between a user and a software artifact
appears as if it was a communicative one, yet it is nothing
but algorithmics. The difference is: communication
usually allows for free interpretation while algorithmics
yields exactly determined responses.

The linguistic means for programming must therefore
be capable of double-faced expression. Such means
should permit the expression of vague ideas and the
precision needed to control a computer, simultaneously. A
user who is an expert in her subject domain, but no expert

in programming, should still find a way to tell a computer
what it is supposed to do. Descriptive means must allow
for an intuitively correct interpretation by the user. To the
computer, however, they must determine exactly one
operation without any interpretative freedom.

“Do what I mean, not what I say”, is a nice way of
saying the same. But this slogan is misleading. It suggests
that the machine could be capable of finding out about
secret desires and transforming them into formal
operations. We do not subscribe to such a view of the
communicative situation between computer and user. Our
approach to end user programming takes a different star-
ting point: We view the situation semiotically, as a sign
process. We don‘t take the approach of tough education
nor that of the intelligent machine.

We start by asserting that human user and computer
are considered two autonomous systems. Either system is
characterized by capabilities in which it cannot be
outperformed. Humans are superior to computers in all
respects that rely on the bodily experience of being-in-
the-world [7]. Nevertheless, humans have developed
computers to incredible algorithmic efficiency. This
efficiency is, however, restricted to the precisely defined
field of computability.

As a consequence of the autonomous-systems assump-
tion, each system belongs to the environment of the other
one. They are losely coupled in pursuit of their respective
processes. The user‘s interest is of an instrumental
character: he wants the computer to carry out particular
tasks. To achieve this, he must control the interface which
appears as a soft layer to protect the computer against
users’ errors or misinterpretations. They are steps in the
usual state of affairs and appear as erroneous only from a
more general perspective, e.g. from an efficiency conside-
ration.

A human-centric perspective views everything from
the human‘s position. It is slightly different from a
human-centred perspective. Centredness looks at the
human from the outside and observes her in pursuing the
task. A certain amount of detachment remains.
Centricness, on the other hand, views the task from the
user‘s perspective and subsumes everything to that.



Fig. 1. Example of algorithmic art used to probe students’
comprehension of algorithmic contents (Manfred Mohr: From

series P-200-K, 1977-79. Permission by the artist)

The work task is socially determined (not technically)
even though the machine is made to carry out important
steps. This generates a tendency of considering the task as
the activity of the computer. End-user programming
appears as an attempt to revert this false tendency.

Since end-users are distinguished from systems pro-
grammers by lack of technical expertise, they have no
way but to metaphorically approach the computer.

Over the past 20 years, metaphor has become an im-
portant concept in software1. We will take up the meta-
phor of Chinese whispers to talk about a programming
situation in a playful way. We look at the data flow of a
program as a Petri net without using the terminology of
Petri nets. The metaphor should make that possible. Our
current application is algorithmic art, particularly that of
Manfred Mohr. Students are supposed to identify
algorithms behind computed works of art.

We first give some background to the application do-
main. In section 3, we give a direct manipulation interface
to the algorithm. Section 4 explains the Chinese whispers
metaphor. We discuss educational issues connected to the
approach and generalize to programming issues in section
6. In section 7, we briefly look at related work, before we
draw a conclusion.

                                                                        
1 A general remark on metaphor may be in place. For detail we refer the
reader to [11] and, much briefer, to [14]. Coyne, in the subtitle of his
remarkable book [3], announces a paradigmatic shift of the focus of
systems design. Before these, Canfield Smith had introduced powerful
metaphors that have ever since governed graphic interfaces [19]. As we
use it here, a metaphor is a sign, or system of signs, to denotate an object
(or system of objects) in such a way that two interpretants are invoked.
The two interpretants belong to distinctly different cultural domains. The
similarity of the interpretants is entirely subjective. We hope for some
kind of transfer from the source domain of the first interpretant to the
goal domain of the second. The source domain should be familiar to
users. Metaphor is supposed to facilitate learning by analogy.

The work described here is part of a project aiming at a
hypermedium as a space for computer art. We are
interested in issues of learning about aesthetics and
algorithms. The contribution of this paper is not to go
beyond the state of visual data flow languages. Others
have more to say about that, and the language of our
project is nothing remarkable. We try to take human-
centricness seriously. This means to use metaphor in a
wrap-in manner and view programming as a semiotic
activity. Our contribution is to identify the interaction
between human and computer as a primarily semiotic
exchange hiding instrumental aspects of programming.
For this aim we base language on metaphor, not the other
way.

2. A case from algorithmic art

Have a look at Figure 1. What could it possibly show?
You observe straight black lines in a seemingly random
arrangement. You also detect vertices with three emerging
edges; some lines look parallel to others.

Fig. 2. The divided cube of Fig. 1, with different rotation and
not clipped (Manfred Mohr: P-200-K, 1977-79. Permission by

the artist)

Humans are good in interpreting pictures with a
figurative content. We usually try to detect in a picture
features resembling objects of our daily experience. Take,
as an example, a painting like that by Leonardo da Vinci
known by the name “Mona Lisa”. If a typical adult in the
West is confronted with this picture, he would most likely
answer “Some old-fashioned lady”, or even “The Mona
Lisa”, when asked the question ”What do you see?”
Could the same become true in our present case? Couldn't
there be some equally obvious relation of the paint on the
flat surface (form) to some object depicted by the paint
(content)? In fact, there is.

We provide a bit more context. Figure 2 is a second
view of the object under consideration. The two figures



are similar in the central area of thick black lines. In
Figure 2, the lines extend to build the parts of cubes in
projection. This indicates how we should interpret Figure
1. Think of two cubes and rotate them independently.
Project them onto the plane of the front face in original
position, and draw just those sections of edges that fall
inside that square face (grey in Fig.2). Do this in such a
way that the first cube‘s projection is blanked out in its
lower part whereas the second cube‘s projection is
blanked in the upper half. Obviously these instructions
may be turned into a precise algorithm. The content of
Fig. 1 is detected by embedding the lines into context.

We present pictures like Figure 1 to students and ask
them: describe an algorithm that generates such pictures.
We hope to motivate students to take a thorough look at
the work of art. By asking them to determine an algorithm
they are bound to make explicit their understanding.

Figures 1 and 2 are representations of paintings by
Manfred Mohr, a New York based German artist who has
been using computers for more than thirty years [10].
Many of his pieces relate to algorithms in subtle ways. It
is important to compare series of Mohr‘s paintings or
prints. Only the serial principle is capable of presenting
the unity in variety that Mohr is interested in. The
algorithm behind the scene stands for the generative prin-
ciple and the content shared by all pictures of a series. It
keeps them together and may be viewed as the secret to
be detected in those works of art.

To be sure, the preference given here to this artist‘s
works is due to their clear algorithmic nature. Algorithms
have been in use to produce works of art since the mid
1960s (one of the authors has contributed to the first such
experiments). There is a wealth of international literature
on the subject, e.g. [12], [21]. The journal, Leonardo,
publishes regularly on procedural art. Within the broader
context of the compArt project we pursue other aspects of
algorithms and beauty.

We now turn away from interpreting Mohr‘s paintings
by only looking at them and thinking about them. We
arrange a situation of direct manipulation that should
support understanding in a learning-by-doing manner [6].
The doing here is semiotically determined. It is not about
oil on canvas.

3. A direct manipulation interface

Figure 3 shows a screenshot from an implementation
that we prepared for the experiment. After starting the
program, the student is confronted with nothing but the
four edges of a square. Nothing hints at the fact that the
square is the parallel projection of a cube orthogonal to its
face. To the right of the display we observe a column of
graphic signs and numerical values. From experience with
GUIs we probably assume they stand for interactive
devices. Most likely, we do not immediately understand
what the icons mean.

Fig. 3. A view of user interface of “Mohr‘s cubical signs”

We bet that most people, even if only little familiar
with the use of computers, will grab the mouse and move
it around. When they do so they implicitly ask “What can
I do here?” Nothing happens if they move the cursor over
the square. But the interaction devices react visibly when
touched by the cursor. In all likelihood, the user will click
on one of the devices thereby declaring it to become the
active tool. Further movement of the cursor will produce
an appropriate effect on the only object present, i.e. on the
square.

When a first operation is applied to it, the square re-
veals an important fact. It seems to consist of two halves,
which can be manipulated independently. In fact, the first
three icons stand for rotations about the three axes of the
upper cube, whereas the same three icons to the bottom
are to manipulate the lower cube. When we rotate a cube,
its projection is no longer perpendicular to the face. Some
of the cube‘s hidden edges show up, and when we rotate
about different axes, we obtain an image of all the edges.
We discover that the projections are cut.

The two icons in the center of the panel allow to set a
different line width, and a magnifying factor. All devices
show their current numerical value.

Our observations of students show that, after a first
period of getting used, users discover what they can do
here. The exercise indicates how easy it has become to
program an interactive device for structures of Mohr
style. However, the user is reduced to be a user. He can
try out parameter settings rapidly and interactively. But
this will not be enough in a more challenging learning
situation. We therefore take a second step to get closer to
opportunities for the evolution of mental models.

4. A visual programming interface

We have developed an interface and language that we
hope to be useful for learning. We describe the interface
itself, and give an example of its use. The interface is
based on a metaphor well-known to pre-schoolers.



4.1 Programming metaphor

Children in various countries are fond of a birthday
party game called “Telephone”, but also “Chinese whis-
pers”, in English. It is Stille Post in German, Le téléphone
Arabe in French. A crowd of children line up one behind
the other. The first child thinks up some funny phrase
which is to become the message passed down the line.
She whispers it into her successor‘s ear. He continues
doing the same by whispering the phrase he has
heard—whatever it was. The last child in the line utters
aloud what she has perceived.

It is fun to compare the first and the last phrase.
Usually they are far apart from each other. Although the
rule of the game says that every child should faithfully
pass the message on to the next relay station, the fun is in
pretending to obey the rule but just slightly twisting the
message. The children display some predetermined be-
havior yet they are free to do whatever comes to their
mind. We have a structure of autonomous agents genera-
ting some total behavior. This makes it attractive for
transfer to our programming situation.

We use the metaphor for programming by organizing a
data flow. We arrange a structure of specialized agents.
An agent is capable of performing a particular task and
has access to several phones. It is connected to other
agents via phone lines. Phones are distinguished as input
and output. On an input phone, the agent is expecting
data. On an output phone it is delivering data as a result of
its processing of inputs.

This is where the metaphor of Chinese whispers carries
through: a message is passed down the line but each time
it reaches a connecting station it may be changed. An
external observer cannot tell directly. She would need to
draw conclusions from observations.

To give an example, one agent is an adder. It is
capable of adding two numbers (or other items) and
deliver the result. It becomes active to do its job whenever
there are numbers waiting to be processed on each of the
two input phones. After having produced the sum, the
agent delivers it on the output phone.

4.2 Language Structure

Programs in Chinese Whispers are constructed by
combining the basic elements: agents, telephones, cables,
alarm clocks, triggers, and books. Telephones, triggers,
alarm clocks and books can be given to an agent as its
assets. Cables are used to establish unidirectional
connections between telephones, or from a trigger to an
alarm clock. Triggers are activated by an agent in order to
tell another agent that it should do something. When an
agent’s alarm clock is triggered, it rings to awake the
agent from passive state. Phone connections are for data
flow, trigger connections for control flow.

Agents work on packets of data: geometric objects,
axes, and numbers. Geometric objects are wire frame

polyhedra. Axes are the three principal directions of
Cartesian space. Numbers come as reals or integers.

Books contain data as constants. When a book is given
to an agent as part of its repository, it contains some
constant that the agent may look up.

An agent is highly specialized but sensitive to the kind
of input it receives. An input line may offer data of types
that the agent cannot handle. If the data is known to the
agent, it adjusts. E.g., the adder agent can add two num-
bers, or superimpose two pictures. This way, agents
represent generic data-driven operations.

There are agents for adding, multiplying, rotating,
cutting, randomizing, comparing, and projecting. Agents
change state as they do their jobs. Once activated, an
agent looks for data on its input phones. If not enough
data is available, it calls on someone else and asks for the
data. When enough data has been collected, the agent
performs its action and tells successors of the result. That
may be some sort of data or an event, used to trigger
someone else’s alarm clock.
We develop Chinese Whispers bottom-up. We choose an
example and try to describe its solution with the currently
implemented set of agents, assets, and packets. If the
language means are not suited well, we improve and ela-
borate their definitions. At present, the language does not
reach far. We neither strive for a minimalistic syntax vs.
maximum generative power, nor do we currently allow
for generally available programming structures (there are
no loop structures, recursion, or functional abstraction).

Our focus is not language but usage. We are, of course,
aware of the intricate relation between the two. But we
follow the hypothesis that language will evolve from
usage if the general framework is suitable. This is a con-
sequence from the premise to adopt a human-centric
position. Language should therefore follow from what it
is used for, not the other way around. The childish meta-
phor is not meant as a trick to instruct users. It rather
helps us communicate about an evolving artifact. It is our
way of talking about the local semantics of primitive
operations and about structure.

Fig. 4. Collection of agents of “Chinese Whispers”: add,
multiply, rotate, cut, randomize, compare, project.

4.3 Visual elements of the interface

Figure 4 shows seven agents as currently implemented.
We have chosen an anthropomorphic visualization.
Human figures display their special capability on the
work shirts. We will redesign the figures such that their
appeal will be less sturdy.

The state of an agent is reflected in its visual appearan-
ce (waving a hand, lying in bed). We borrow from work
by Beaudouin-Lafon [1] for the general appeal of the
interaction. There are two mice controlling a red and a



green cursor pointing left and right upwards. Each mouse
can adopt the other’s function. We also borrow the tool
glass as a convenient device to locally arrange and change
visual settings (Figure 5).

Fig. 5. The tool glass put into position to move an agent (the
transparent overlay is colored on the screen)

The visual interface is equipped with three vertical
bars (or palettes), one speed indicator, and the Chinese
Whispers ground (Figure 6). The latter is the work area
where the user places agents, assets, and phone lines and
thus creates a structure for whispering.

Fig. 6. Interface of “Chinese Whispers”: tools, agents,
packets, time speed control, and two cursors

The three bars collect tools, agents, and packets resp. It
may be necessary to scroll elements within a bar. The
speed indicator resembles the dial of a potentiometer.

The speed indicator is a neat device to control, and
thereby test-run, the crowd of agents. In central position
(hand pointing straight up), all activity is stopped. Moving
the hand to the right activates all agents. The distance
from neutral position determines the speed of the agents‘
actions. Placing the hand to the left from neutral position
causes time to run backwards.

4.4 An example: Mohr‘s cubical signs

We take up the example from section 2. We want to
arrange a stuctured crowd of agents such that the class of
computer art pieces in the style of Mohr’s cubes gets
generated. For introductory purposes we reduce comple-
xity. Figure 7 displays a structure of five agents that do
the simplified job.

Fig. 7. Connected assembly of agents for a simplified version
of Mohr‘s cubical signs (a data flow diagram)

To the right, a projector agent is in sleeping state. If its
alarm goes off, it wakes up and orthogonally projects the
object delivered to it onto the picture plane.

The next agent to the left is capable of superimposing
two pictures. It calls upon two scissoring agents to
provide the pictures. The lower one of them takes a cube
and cuts off half of it. The upper one does the same but to
an object that has to be delivered by a rotating agent. The
rotator takes a cube and rotates it about the x-axis by
some angle.

The working principle of the metaphor should become
clear from this short exposition. Rotations about the other
axes would have to be compounded for “real” Mohr
cubical signs.

4.5 Interface behavior

As indicated before, we see an important task for the
programming environment to tighten the link between
program structure and its semantics. In semiotic terms,
programs are complex signs. As such they relate a repre-
sentamen to an object and generate an interpretant [17].
The representamen is the syntactic structure, the object is
what the program execution produces, and the interpretant
is what sense the user makes out of this (or puts into). The
mental gap in programming is the gap between formal
structure (expressed in the representamen) and vague idea
(interpretant). The link between the two runs through the
object. Usually what we learn in programming is to get
our ideas closer to the objects that are designated by the
syntactic structure. In end user programming we should
be able to narrow the gap on a different level.

We have implemented mechanisms and interactive
behaviors into this language and system to assist the
process of describing a whispering situation. The most



important aspect is ignoring the distinction between
program design time and program execution time. Similar
to Pygmalion [19], agents can be active without the
existence of a complete program. The program graph can
be modified while the program is running. The state of the
program elements can be inspected at any time. The speed
indicator is useful for various tests. If an exceptional
situation is reached, flow is stopped automatically and
feedback is given. By setting a negative speed, the data
and control flow can be traced back to the cause of the
unintended behavior.

5. Educational issues

We prepare an application of the system of the
following kind. A group of paintings by Manfred Mohr is
presented to an interested student, preferably, but not
necessarily, in print. He or she is told that there exists an
algorithm that generated these pictures. The job is to
formulate an algorithm in the visual language of the
agents. This job should be done interactively in the
interface medium.

The learning situation is characterized in the following
way. The student is supposed to analyze a small set of
structurally similar paintings. This analysis is, by and
large, a test of the student‘s ability to detect an abstract,
formal principle hidden in a sample set of pictures. As a
result of this phase, the student may talk about what he or
she believes is the case. He (or she) expresses in plain
language whatever comes to mind as a vague idea about
the algorithmic background.

The second step consists of carefully formulating the
algorithm in Chinese Whispers. Since the system can be
changed while running, any change is immediately
reflected in the behavior of some agent, and thus of the
system. We may logically distinguish a third phase of
learning, the phase of testing the algorithm.

To summarize the learning situation, there are ele-
ments of sensual observation, mental reflection, explicit
formulation, automatic testing, correcting a formal sys-
tem, and comparing constructed results with givens.
These steps contain experimental as well as reflective,
iconic as well as symbolic, concrete as well as abstract
components. Learning succeeds in so far as the student
has a chance to approach the subject matter from different
perspectives. Experiencing differences and drawing con-
clusions from them leads to changes of ideas.

Not much actual evaluation has taken place. We have
experimented with the system on an ad hoc basis. Results
are encouraging but not conclusive (section 8).

6. Programming
without a programming language

The student‘s activity culminates in a successful set-up
of a crowd of whispering agents. This set-up is the result
of an experimental, visual, interactive, and, we hope,
joyful activity. Granted, it looks a bit childish. We will
sooner or later know just which degree of childishness is

tolerable to students, and where we should resort to more
serious, i.e. more abstract, kinds of visual elements.

In any case, the crowd of agents constitutes a
whispering society. Its members work cooperatively
towards some common goal. A structure emerges, not
necessarily the most brilliant one. But the student is
implicitly asked to arrange whispering agents in such a
way that their combined whispers amount to a great song,
a song of successful achievement.

The student experiences the success of her efforts im-
mediately without another person intervening. She
compares the crowd's products with Mohr‘s art. The
student decides when the job is done.

This state of affairs is characterized by the existence of
an algorithm hidden behind the backs of the agents. We
have the ingredients of any algorithmic situation: primi-
tives that cannot be changed and do something basic, the
agents; ways for these primitives to communicate what
they produce, the phones; means to define structure, the
phone lines; and means to express variety: the states of
agents and packets of data.

These constructive elements are capable of expressing
linear sequence. There is one agent doing some basic
comparison (the scales). Given sequence and conditional,
iteration can be expressed, if back phone lines are
allowed. There is some degree of parallelism whenever
agents work independently on their data. No provision is
made to deal with structured data.

Students are not requested to learn an abstract syntax
in order to formulate algorithmic processes. All they need
is an understanding of the Chinese whispers metaphor and
its use in the present context. A brief introduction should
suffice for that. The metaphor and the visual direct
manipulation environment offer feedback. What students
do is some sort of programming but possibly without
knowledge of a programming language syntax.

This is well known to the visual programming commu-
nity. Our contribution is in the approach and the clientele
we hope to reach: students of fine art. We stress the
combination of media: reproductions of actual works
should be available for immediate comparison.

The balance to strike is that of complexity versus
simplicity. Our starting situation contains some works of
recognized art (no toy examples). Now students are
requested to produce an algorithm that demonstrably
creates such pieces. Even if these miss decisive features
of the given works, they should clearly belong to the same
class. If this happens, the student is in a position to
develop a feeling for the relation between beauty and
computability. The computable formulation arrives after
the fact of the work of art, but it existed before, when the
artist did his programming. We expect insight into
complexity to emerge from the approach.

Our premise is that one important kind of thorough
understanding can be demonstrated by algorithmic expre-
ssion. Algorithmic expression necessitates some formal
language. Programming languages are such means.
Although unavoidable in the end, we try to stay away



from them for this type of learning out of the following
reasons.

Learning happens as a sequence of ever more plausible
hypotheses is created (the path of abduction [9]). Such
hypotheses are rarely ever true of false. They are some-
thing inbetween. We believe them and use them to argue
with. Students are looking for adequate descriptions, not
for logically true ones. Learning is more akin to expres-
sive means (signs) than to truth values (propositions).
Semiotics is closer to this than to logic.

Since we take algorithms as a final proving ground, we
are tight to logic, and precise formal syntax cannot be
avoided. We acknowledge this fact but we try to hide it
and wrap it into the metaphor. We base the language on
metaphor and let the metaphor unfold its creative poten-
tial instead of attaching a metaphor on top of a language.
The latter is what gets usually done on a merely didactic
level.

We are aware of the problematic value of metaphor
[2]. Not in all situations, and not for all stages, are meta-
phors a good advice. They remain useful for qualitative
purposes when vague ideas are in the first stages of grad-
ually becoming clear. We do not expect their effects to be
quantitatively measurable. As is the case with sign pro-
cesses in general, the dynamics of the situation is what
matters most.

7. Related work

At times, a simple diagram highlights a problem more
convincingly than a long treatise. For the relation of the
user of a technical system to that technical system itself,
Don Norman has presented such a diagram [15]. Between
the mental “representation” of a problem and its explicit
algorithmic representation, there is a gulf that cannot be
bridged but has to be mastered. Going from human mental
goals (vague ideas) to operations of a technical system
(program) is to cross the gulf of execution. Taking the
results of the program and interpreting them in the context
of human ideas is to cross the gulf of evaluation.

As Norman suggests, there are two ways of bridging
the gulf: move the system closer to the user, or move the
user closer to the system. The usual programming course
takes the second way (tough education). Many program-
ming-by-example approaches take the first. We take a
slightly different look. We doubt that there are represen-
tations in the brain—at least we do not know of them
other than as a hypothesis. But users are confronted with
all sorts of external representations. Some are offered to
them by technical systems. Others are generated by
himself.

The use of a software system amounts to a play with
representations. This is a typical semiotic situation. Since
any use of an artifact is a dynamic process, everything
changes and nothing remains fixed on the user’s side. Use
enforces learning. It is therefore misleading to assume
that the user has a representation. He continually forms
one, and, in doing so, follows an interest. Even the goal of
an activity changes as the activity progresses. Therefore

we abandon any static assumption in the context of usage
and prefer a media perspective instead. (Problems of
representation have puzzled much of AI research, viz.
[8]).

Explicit representation and implicit interpretation are
the topic of semiotics. A sign appears as representation of
some other entity that is absent. We take an interest in re-
presentations only when we interpret. Vague interpre-
tation and formal representation are united in Peirce's
concept of the relational sign [17]. We are convinced that
a treasure is to be discovered for the theory of
programming in Peircean semiotics. The recent interest by
a number of authors in contexts of software usage and
design is an indication of this (e.g. [5, 13]).

On a graphic display, the user encounters visual
signals. They are produced algorithmically and, at first,
have no meaning. Meaning is a human product. Em-
bedding signals into contexts generates meaning. This is
what the user does in an act of permanent interpretation.
Semiotics is the art and science of interpretation [14].
Fine art is on subjectively interpreting given representa-
tions. Programming is on generating precise represen-
tations of sloppy concepts. This way, programming and
fine art are related inversely, and semiotics builds a bridge
between them.

Within the narrower field of programming, we owe
much to David Canfield Smith's pioneering work on
Pygmalion ([19], see also his contribution to [4]). His in-
vention of the icon has become a paradigmatic ingredient
of all graphic interfaces. It is a genuinely semiotic concept
and of great power for user immediacy.

Smith observed that “editing an artifact rather than
typing statements” was easy for people. He also viewed
his editing system, Pygmalion, as a medium. In both res-
pects, he defines our starting point.

Where Smith et al. [20] and Repenning & Perrone [18]
in their successful and path-breaking work on end-user
programming focus on rules, we take a, perhaps, more
conventional approach. Ours is to invite the user to de-
scribe, in a metaphorical way, a total algorithmic struc-
ture. It connects locally meaningful agents, and thus
combines global and local aspects. The other approach is
to concentrate on local semantics only, and leave the rest
to a powerful general rule interpreter.

8. Conclusion

We have presented the metaphor of Chinese whispers
as a framework for a programming exercise. Program-
ming was hidden in so far as students had to detect an
algorithm from samples. The Chinese Whispers system
helps students (of fine art, or in school) to arrive at some
explicitly formulated algorithmic understanding in so far
as the direct manipulation interface is close to everyday
habits: two hands may be used, and manipulations are
directed towards objects.

We have not yet extensively tested the system. But we
have collected preliminary observations in playful
settings. During a seminar at the Juske Akademi for Kunst



in Aarhus, Denmark, in the fall of 2000, we split parti-
cipants into three groups. Each group had to solve the
same problem but was given different means. The
problem was, as always: find an algorithm, and describe it
as rigorously as possible, that generates the class of pic-
tures some given samples belong to.

The three groups of students differed in so far as two
of them were working on the computer, whereas the third
one had only paper and pencil at their disposal. The
computer groups were given the first direct manipulation
program (no agents yet) in different versions (with and
without explanations). A major observation was that stu-
dents without computer developed a more abstract under-
standing. Students working with the computer developed
a better feeling for spatial effects of the situation. This
may be attributed to the immediate appeal of rotating an
object in 3D space even if this is viewed on a flat display
screen. We are currently preparing for tests that will take
up more complex structures.

We hide the programming task behind interactive play-
ful operations. We borrow test cases from fine art. Taken
together, we have a typical media situation. We expect to
be able to show that the media perspective (as opposed to
a tool perspective) is the end unser perspective. Since
media are complex signs, semiotics becomes important in
developing frameworks for programming without explicit
attention to programming language. Much of this has long
been around with the visual languages community. Our
additional expectation is that understanding visual
expressiveness can gain from fine arts and semiotics, and
from their combination.

Acknowledgement. We are indebted to Manfred Mohr for
granting permission to reproduce his work. During a stay in
1998 at the University of Colorado at Boulder, two of us have
learned a lot from discussions with Alexander Repenning.
Important hints from anonymous reviewers helped us improve
the paper.

References

[1] M. Beaudouin-Lafon: Instrumental interaction: an interaction
model for designing post-WIMP user interfaces. Proc. CHI
2000, April 2000, pp. 446-453

[2] A. F. Blackwell, T. R. G. Green: Does Metaphor Increase
Visual Language Usability? Proc. 1999 IEEE Symp. Visual
Lang., 246-253
[3] R. Coyne: Designing Information Technology in the
Postmodern Age: From Method to Metaphor. Cambridge: MIT
Press 1995
[4] A. Cypher (ed.): Whatch What I Do. Programming by
Denmonstration. Cambridge, MA: MIT Press 1993
[5] B. Dahlbom, L. Mathiassen: Computers in Context.
Cambridge, MA: NCC Blackwell 1993
[6] J. Dewey: Democracy and Education. New York: The Free
Press 1997
[7] H. L. Dreyfus, St. E. Dreyfus: Mind over Machine. New
York: The Free Press 1986
[8] J. A. Fodor: Representations. Philosophical Essays on the
Foundations of Cognitive Science. Cambridge, MA: MIT Press
1981
[9] J. R. Josephson, S. G. Josephson (eds.): Abductive Inference.
Computation, Philosophy, Technology. Cambridge University
Press 1994
[10] M. Keiner, Th. Kurtz, M. Nadin (eds.): Manfred Mohr.
Zürich: Waser-Verlag 1994
[11] G. Lakoff, M. Johnson: Metaphors We Live By. Chicago:
University of Chicago Press 1980
[12] P. McCorduck: Aaron‘s Code. Meta-Art, Artificial Intelli-
gence, and the Work of Harold Cohen. New York: W.H.
Freeman 1991
[13] B. A. Nardi (ed.): Context and Consciousness. Activity
Theory and Human-Computer Interaction. Cambridge, MA:
MIT Press 1996
[14] W. Nöth: Handbook of Semiotics. Bloomington: Indiana
University Press 1993
[15] D. A. Norman: Cognitive Engineering. In: D. A. Norman,
S. Draper (eds.): User Centered System Design. Hillsdale, N.J.:
Erlbaum 1986
[16] Ch. S. Peirce: How to make our ideas clear. In: J. Buchler
(ed.): Philosophical Writings of Peirce. New York: Dover Publ.
1955
[17] Ch. S. Peirce: The Theory of Signs. In: J. Buchler (ed.):
Philosophical Writings of Peirce. New York: Dover Publ. 1955
[18] A. Repenning, C. Perrone: Programming by analogous
examples. In: H. Lieberman (ed.): Your Wish is my Command.
Programming by Example. San Francisco, CA: Morgan
Kaufmann 2001
[19] D. Canfield Smith: Pygmalion: A Computer Program to
Model and Stimulate Creative Thought. Basel: Birkhäuser 1977
[20] D. Canfield Smith, A. Cypher, L. Tesler: Novice Program-
ming comes of Age. In: H. Lieberman (ed.): Your Wish is my
Command. Programming by Example. San Francisco, CA:
Morgan Kaufmann 2001
[21] A. Spalter: Computers in the Visual Arts. Reading, MA:
Addison Wesley 1999


